The evaluation of antioxidant compounds that counteract the mutagenic effects caused by the direct action of reactive oxygen species on DNA molecule is of considerable interest. Therefore, a series of 2,3-substituted quinazolinone derivatives (Q1–Q8) were investigated by different assays, and the relationship between their biological properties and chemical structure was examined. Genotoxicity and the potential DNA-protective effects of Q1–Q8 were evaluated by comet assay and DNA topology assay. Antioxidant activity was examined by DPPH-radical-scavenging, reducing-power, and total antioxidant status (TAS) assays. The cytotoxic effect of compounds was assessed in human renal epithelial cells (TH-1) and renal carcinoma cells (Caki-1) by MTT assay. Analysis of the structure–activity relationship disclosed significant differences in the activity depending on the substitution pattern. Derivatives Q5–Q8, bearing electron-donating moieties, were the most potent members of this series. Compounds were not genotoxic and considerably decreased the levels of DNA lesions induced by oxidants (H2O2, Fe2+ ions). Furthermore, compounds exhibited higher cytotoxicity in Caki-1 compared to that in TH-1 cells. Substantial antioxidant effect and DNA-protectivity along with the absence of genotoxicity suggested that the studied quinazolinones might represent potential model structures for the development of pharmacologically active agents.
Nature has been a source of inspiration for the development of new pharmaceutically active agents. A series of new unnatural gallotannins (GTs), derived from d-lyxose, d-ribose, l-rhamnose, d-mannose, and d-fructose have been designed and synthesized in order to study the protective and antimicrobial effects of synthetic polyphenols that are structurally related to plant-derived products. The structures of the new compounds were confirmed by various spectroscopic methods. Apart from spectral analysis, the antioxidant activity was evaluated by 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical-scavenging and iron reducing power (FRAP) assays. Antibacterial activity of compounds was tested in vitro against Staphylococcus aureus ATCC 29213, Enterococcus faecalis ATCC 29212 (reference and control strains), three methicillin-resistant isolates of S. aureus, and three isolates of vancomycin-resistant E. faecalis. For screening of antimycobacterial effect, a virulent isolate of Mycobacterium tuberculosis and two non-tuberculous mycobacteria were used. Furthermore, antibiofilm activity of structurally different GTs against S. aureus, and their ability to inhibit sortase A, were inspected. Experimental data revealed that the studied GTs are excellent antioxidants and radical-scavenging agents. The compounds exhibited only a moderate antibacterial effect against Gram-positive pathogens S. aureus and E. faecalis and were practically inactive against mycobacteria. However, they were efficient inhibitors and disruptors of S. aureus biofilms in sub-MIC concentrations, and interacted with the quorum-sensing system in Chromobacterium violaceum. Overall, these findings suggest that synthetic GTs could be considered as promising candidates for pharmacological, biomedical, consumer products, and for food industry applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.