Proteasome inhibitors are novel therapeutic agents for the treatment of cancer and other severe disorders. One of the possible side effects is influencing the metabolism of proteins. The aim of our study was to evaluate the influence of three proteasome inhibitors MG132, ZL(3)VS and AdaAhx(3)L(3)VS on protein metabolism and leucine oxidation in incubated skeletal muscle of control and septic rats. Total proteolysis was determined according to the rates of tyrosine release into the medium during incubation. The rates of protein synthesis and leucine oxidation were measured in a medium containing L-[1-(14)C]leucine. Protein synthesis was determined as the amount of L-[1-(14)C]leucine incorporated into proteins, and leucine oxidation was evaluated according to the release of (14)CO(2) during incubation. Sepsis was induced in rats by means of caecal ligation and puncture. MG132 reduced proteolysis by more than 50% and protein synthesis by 10-20% in the muscles of healthy rats. In septic rats, proteasome inhibitors, except ZL(3)VS, decreased proteolysis in both soleus and extensor digitorum longus (EDL) muscles, although none of the inhibitors had any effect on protein synthesis. Leucine oxidation was increased by AdaAhx(3)L(3)VS in the septic EDL muscle and decreased by MG132 in intact EDL muscle. We conclude that MG132 and AdaAhx(3)L(3)VS reversed protein catabolism in septic rat muscles.
Background and Objectives:Declines in stroke admission, intravenous thrombolysis, and mechanical thrombectomy volumes were reported during the first wave of the COVID-19 pandemic. There is a paucity of data on the longer-term effect of the pandemic on stroke volumes over the course of a year and through the second wave of the pandemic. We sought to measure the impact of the COVID-19 pandemic on the volumes of stroke admissions, intracranial hemorrhage (ICH), intravenous thrombolysis (IVT), and mechanical thrombectomy over a one-year period at the onset of the pandemic (March 1, 2020, to February 28, 2021) compared with the immediately preceding year (March 1, 2019, to February 29, 2020).Methods:We conducted a longitudinal retrospective study across 6 continents, 56 countries, and 275 stroke centers. We collected volume data for COVID-19 admissions and 4 stroke metrics: ischemic stroke admissions, ICH admissions, intravenous thrombolysis treatments, and mechanical thrombectomy procedures. Diagnoses were identified by their ICD-10 codes or classifications in stroke databases.Results:There were 148,895 stroke admissions in the one-year immediately before compared to 138,453 admissions during the one-year pandemic, representing a 7% decline (95% confidence interval [95% CI 7.1, 6.9]; p<0.0001). ICH volumes declined from 29,585 to 28,156 (4.8%, [5.1, 4.6]; p<0.0001) and IVT volume from 24,584 to 23,077 (6.1%, [6.4, 5.8]; p<0.0001). Larger declines were observed at high volume compared to low volume centers (all p<0.0001). There was no significant change in mechanical thrombectomy volumes (0.7%, [0.6,0.9]; p=0.49). Stroke was diagnosed in 1.3% [1.31,1.38] of 406,792 COVID-19 hospitalizations. SARS-CoV-2 infection was present in 2.9% ([2.82,2.97], 5,656/195,539) of all stroke hospitalizations.Discussion:There was a global decline and shift to lower volume centers of stroke admission volumes, ICH volumes, and IVT volumes during the 1st year of the COVID-19 pandemic compared to the prior year. Mechanical thrombectomy volumes were preserved. These results suggest preservation in the stroke care of higher severity of disease through the first pandemic year.Trial Registration Information:This study is registered underNCT04934020.
Acidosis is frequently associated with protein wasting and derangements in amino acid metabolism. As its effect on protein metabolism is significantly modulated by other abnormal metabolic conditions caused by specific illnesses, it is difficult to separate out the effects on protein metabolism solely due to acidosis. The aim of the present study was to evaluate, using a model of isolated perfused rat liver, the direct response of hepatic tissue to acidosis. We have compared hepatic response to perfusion with a solution of pH 7.2 and 7.4 (controls). Parameters of protein and amino acid metabolism were measured using both recirculation and single-pass technique with 4,5-[3H]leucine, [1-14C]leucine and [1-14C]ketoisocaproate (ketoleucine) as tracers and on the basis of difference of amino acid levels in perfusion solution at the beginning and end of perfusion. In liver perfused with a solution of pH 7.2, we observed higher rates of proteolysis, protein synthesis, amino acid utilization and urea production. Furthermore, the liver perfused with a solution of pH 7.2 released a higher amount of proteins to perfusate than the liver perfused with a solution of pH 7.4. Enhanced decarboxylation of ketoisocaproate in liver perfused by a solution of a lower pH indicates increased catabolism of branched-chain amino acids (leucine, valine and isoleucine), decreased reamination of branched-chain keto acids to corresponding essential amino acids and increased ketogenesis from leucine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.