Natural flavonoids, especially in their glycosylated forms, are the most abundant phenolic compounds found in plants, fruit, and vegetables. They exhibit a large variety of beneficial physiological effects, which makes them generally interesting in a broad spectrum of scientific areas. In this review, we focus on recent advances in the modifications of the glycosidic parts of various flavonoids employing glycosidases, covering both selective trimming of the sugar moieties and glycosylation of flavonoid aglycones by natural and mutant glycosidases. Glycosylation of flavonoids strongly enhances their water solubility and thus increases their bioavailability. Antioxidant and most biological activities are usually less pronounced in glycosides, but some specific bioactivities are enhanced. The presence of l-rhamnose (6-deoxy-α-l-mannopyranose) in rhamnosides, rutinosides (rutin, hesperidin) and neohesperidosides (naringin) plays an important role in properties of flavonoid glycosides, which can be considered as “pro-drugs”. The natural hydrolytic activity of glycosidases is widely employed in biotechnological deglycosylation processes producing respective aglycones or partially deglycosylated flavonoids. Moreover, deglycosylation is quite commonly used in the food industry aiming at the improvement of sensoric properties of beverages such as debittering of citrus juices or enhancement of wine aromas. Therefore, natural and mutant glycosidases are excellent tools for modifications of flavonoid glycosides.
Quercetin is a flavonoid largely employed as a phytochemical remedy and a food or dietary supplement. We present here a novel biocatalytic methodology for the preparation of quercetin from plant-derived rutin, with both substrate and product being in mostly an undissolved state during biotransformation. This “solid-state” enzymatic conversion uses a crude enzyme preparation of recombinant rutinosidase from Aspergillus niger yielding quercetin, which precipitates from virtually insoluble rutin. The process is easily scalable and exhibits an extremely high space-time yield. The procedure has been shown to be robust and was successfully tested with rutin concentrations of up to 300 g/L (ca 0.5 M) at various scales. Using this procedure, pure quercetin is easily obtained by mere filtration of the reaction mixture, followed by washing and drying of the filter cake. Neither co-solvents nor toxic chemicals are used, thus the process can be considered environmentally friendly and the product of “bio-quality.” Moreover, rare disaccharide rutinose is obtained from the filtrate at a preparatory scale as a valuable side product. These results demonstrate for the first time the efficiency of the “Solid-State-Catalysis” concept, which is applicable virtually for any biotransformation involving substrates and products of low water solubility.
Rutinosidases (α‐l‐rhamnosyl‐β‐d‐glucosidases) catalyze the cleavage of the glycosidic bond between the aglycone and the disaccharide rutinose (α‐l‐rhamnopyranosyl‐(1→6)‐β‐d‐glucopyranose) of specific flavonoid glycosides such as rutin (quercetin 3‐O‐rutinoside). Microbial rutinosidases are part of the rutin catabolic pathway, enabling the microorganism to utilize rutin and related plant phenolic glycosides. Here, we report the first three‐dimensional structure of a rutinosidase determined at 1.27‐Å resolution. The rutinosidase from Aspergillus niger K2 (AnRut), a member of glycoside hydrolase family GH‐5, subfamily 23, was heterologously produced in Pichia pastoris. The X‐ray structure of AnRut is represented by a distorted (β/α)8 barrel fold with its closest structural homologue being an exo‐β‐(1,3)‐glucanase from Candida albicans (CaExg). The catalytic site is located in a deep pocket with a striking structural similarity to CaExg. However, the entrance to the active site of AnRut has been found to be different from that of CaExg – a mostly unstructured section of ~ 40 residues present in CaExg is missing in AnRut, whereas an additional loop of 13 amino acids partially covers the active site of AnRut. NMR analysis of reaction products provided clear evidence for a retaining reaction mechanism of AnRut. Unexpectedly, quercetin 3‐O‐glucoside was found to be a better substrate than rutin, and thus, AnRut cannot be considered a typical diglycosidase. Mutational analysis of conserved active site residues in combination with in silico modeling allowed identification of essential interactions for enzyme activity and helped to reveal further details of substrate binding. The protein sequence of AnRut has been revised.DatabasesThe nucleotide sequence of the rutinosidase‐encoding gene is available in the GenBank database under the accession number MN393234. Structural data are available in the PDB database under the accession number 6I1A.Enzymeα‐l‐Rhamnosyl‐β‐d‐glucosidase (EC 3.2.1.168).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.