Fluorescence
of 2-(N,N-dimethylamino)-6-propionylnaphthalene
dyes Badan and Prodan is quenched by tryptophan in Brij 58 micelles
as well as in two cytochrome P450 proteins (CYP102, CYP119) with Badan
covalently attached to a cysteine residue. Formation of nonemissive
complexes between a dye molecule and tryptophan accounts for about
76% of the fluorescence intensity quenching in micelles, the rest
is due to diffusive encounters. In the absence of tryptophan, fluorescence
of Badan-labeled cytochromes decays with triexponential kinetics characterized
by lifetimes of about 100 ps, 700–800 ps, and 3 ns. Site mutation
of a histidine residue in the vicinity of the Badan label by tryptophan
results in shortening of all three decay lifetimes. The relative amplitude
of the fastest component increases at the expense of the two slower
ones. The average quenching rate constants are 4.5 × 108 s–1 (CYP102) and 3.7 × 108 s–1 (CYP119), at 288 K. Cyclic voltammetry of Prodan
in MeCN shows a reversible reduction peak at −1.85 V vs NHE
that becomes chemically irreversible and shifts positively upon addition
of water. A quasireversible reduction at −0.88 V was observed
in an aqueous buffer (pH 7.3). The excited-state reduction potential
of Prodan (and Badan) is estimated to vary from about +0.6 V (vs NHE)
in polar aprotic media (MeCN) to approximately +1.6 V in water. Tryptophan
quenching of Badan/Prodan fluorescence in CYPs and Brij 58 micelles
is exergonic by ≤0.5 V and involves tryptophan oxidation by
excited Badan/Prodan, coupled with a fast reaction between the reduced
dye and water. Photoreduction is a new quenching mechanism for 2-(N,N-dimethylamino)-6-propionylnaphthalene
dyes that are often used as solvatochromic polarity probes, FRET donors
and acceptors, as well as reporters of solvation dynamics.
The decomposition of flavonols quercetin and fisetin, flavone luteolin and flavanone taxifolin was studied in slightly alkaline solution under ambient conditions. The study was based on spectrophotometry and high-pressure liquid chromatography. Products formed by atmospheric oxygen oxidation and hydrolysis were identified by HPLC–DAD and HPLC–ESI-MS/MS. Only small differences in the chemical structure of flavonoids resulted in extremely variable oxidation pathways and products. Oxidation of flavonols led to the formation of both a benzofuranone derivative and several open structures. On the contrary, the benzofuranone derivative was not found as a product of taxifolin and luteolin oxidative decomposition. These compounds were oxidized to their hydroxylated derivatives and typical open structures. Quercetin was not identified as a possible oxidation product of taxifolin
Catecholase like biomimetic catalysts: two dinuclear copper complexes [Cu2(L1)(OH)(H2O)(EtOH)][ClO4]2 (C1) and [Cu2Ac2O(L1)ClO4] (C2) with 2,6-bis(4-methyl piperazin-1-yl-methyl)-4-formyl-phenoxy ligand (L1) together with mononuclear complex Cu(ClO4)2(L2) (C3) containing ligand 1,2-(C5H4N-6-OCH3-2-CH=N)2CH2CH2 (L2) were synthesized....
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.