BackgroundIn recent years attention has focused on γH2AX as a very sensitive double strand break indicator. It has been suggested that γH2AX might be able to predict individual radiosensitivity. Our aim was to study the induction and repair of DNA double strand breaks labelled by γH2AX in a large cohort.MethodsIn a prospective study lymphocytes of 136 rectal cancer (RC) patients and 59 healthy individuals were ex vivo irradiated (IR) and initial DNA damage was compared to remaining DNA damage after 2 Gy and 24 hours repair time and preexisting DNA damage in unirradiated lymphocytes. Lymphocytes were immunostained with anti-γH2AX antibodies and microscopic images with an extended depth of field were acquired. γH2AX foci counting was performed using a semi-automatic image analysis software.ResultsDistinct increased values of preexisting and remaining γH2AX foci in the group of RC patients were found compared to the healthy individuals. Additionally there are clear differences within the groups and there are outliers in about 12% of the RC patients after ex vivo IR.ConclusionsThe γH2AX assay has the capability to identify a group of outliers which are most probably patients with increased radiosensitivity having the highest risk of suffering radiotherapy-related late sequelae.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.