Human pluripotent stem cells (hPSCs) can self-renew indefinitely, making them an attractive source for regenerative therapies. This expansion potential has been linked with acquisition of large copy number variants (CNVs) that provide mutant cells with a growth advantage in culture1–3. However, the nature, extent, and functional impact of other acquired genome sequence mutations in cultured hPSCs is not known. Here, we sequenced the protein-coding genes (exomes) of 140 independent human embryonic stem cell (hESC) lines, including 26 lines prepared for potential clinical use4. We then applied computational strategies for identifying mutations present in a subset of cells5. Though such mosaic mutations were generally rare, we identified five unrelated hESC lines that carried six mutations in the TP53 gene that encodes the tumor suppressor P53. Notably, the TP53 mutations we observed are dominant negative and are the mutations most commonly seen in human cancers. We used droplet digital PCR to demonstrate that the TP53 mutant allelic fraction increased with passage number under standard culture conditions, suggesting that P53 mutation confers selective advantage. When we then mined published RNA sequencing data from 117 hPSC lines, we observed another nine TP53 mutations, all resulting in coding changes in the DNA binding domain of P53. Strikingly, in three lines, the allelic fraction exceeded 50%, suggesting additional selective advantage resulting from loss of heterozygosity at the TP53 locus. As the acquisition and favored expansion of cancer-associated mutations in hPSCs may go unnoticed during most applications, we suggest that careful genetic characterization of hPSCs and their differentiated derivatives should be carried out prior to clinical use.
Compromised fetal growth impairs vascular function; however, it is unclear whether chronic hypoxia in utero affects adult endothelial function. We hypothesized that maternal hypoxia (H, 12% O 2 , n = 9) or nutrient restriction (NR, 40% of control, n = 7) imposed from day 15-21 pregnancy in rats would impair endothelial function in adult male offspring (relative to control, C, n = 10). Using a wire myograph, endothelium-dependent relaxation in response to methacholine was assessed in small mesenteric arteries from 4-and 7-month-old (mo) male offspring. Nitric oxide (NO) mediation of endothelium-dependent relaxation was evaluated using N ω -nitro-L-arginine methyl ester (L-NAME; NO synthase inhibitor). Observed differences in the NO pathway at 7 months were investigated using exogenous superoxide dismutase (SOD) to reduce NO scavenging, and sodium nitroprusside (SNP; NO donor) to assess smooth muscle sensitivity to NO. Sensitivity to methacholine-induced endothelium-dependent relaxation was reduced in H offspring at 4 months (P < 0.05), but was not different among groups at 7 months. L-NAME reduced methacholine sensitivity in C (P < 0.01), H (P < 0.01) and NR (P < 0.05) offspring at 4 months, but at 7 months L-NAME reduced sensitivity in C (P < 0.05), tended to in NR (P = 0.055) but had no effect in H offspring. SOD did not alter sensitivity to methacholine in C, but increased sensitivity in H offspring (P < 0.01). SNP responses did not differ among groups. In summary, prenatal hypoxia, but not nutrient restriction impaired endothelium-dependent relaxation at 4 months, and reduced NO mediation of endothelial function at 7 months, in part through reduced NO bio-availability. Distinct effects following reduced maternal oxygen versus nutrition suggest that decreased oxygen supply during fetal life may specifically impact adult vascular function.
Pom121 anchors core structures of the NPC to the membrane through its binding to the β-propeller domains of Nup155 and Nup160.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.