Binge drinking during adolescence and adulthood may have differential long-term effects on the brain. We investigated the long-term effects of chronic intermittent ethanol (CIE) exposure during adolescence and adulthood on impulsivity and anxiety-like behavior. Adolescent (adolescent-exposed) and adult (adult-exposed) rats were exposed to CIE/water on postnatal days (PND) 28-53 and PND146-171, respectively, and a 4-day ethanol/water binge on PND181-184 and PND271-274, respectively. During withdrawal from CIE and 4-day binge exposures, anxiety-like behavior and arousal were measured in the light-potentiated startle (LPS) and the acoustic startle (ASR) procedures, respectively. Impulsive choice was evaluated in the delay discounting task (DDT) at baseline and after ethanol challenges. Independent of age, ASR and LPS were decreased during withdrawal from CIE exposure. In contrast, LPS was increased in adult-exposed, but not adolescent-exposed, rats during withdrawal from the 4-day ethanol binge. CIE exposure had no effect on preference for the large delayed reward at baseline, independent of age. During DDT acquisition, CIE-exposed, compared with water-exposed rats, omitted more responses, independent of age, suggesting CIE-induced disruption of cognitive processes. Ethanol challenges decreased preference for the large reward in younger adolescent-exposed rats but had no effect in older adult-exposed rats independent of previous CIE/water exposure. Taken together, the present studies demonstrate that CIE withdrawal-induced decreases in anxiety and arousal were not age-specific. CIE exposure had no long-term effects on baseline impulsive choice. Subsequent ethanol exposure produced age-dependent effects on impulsivity (increased impulsivity in younger adolescent-exposed rats) and anxiety-like behavior (increased anxiety-like behavior in older adult-exposed rats).
Three populations of neurons expressing the vesicular glutamate transporter 2 (Vglut2) were recently described in the A10 area of the mouse midbrain, of which two populations were shown to express the gene encoding, the rate-limiting enzyme for catecholamine synthesis, tyrosine hydroxylase (TH).One of these populations (“TH–Vglut2 Class1”) also expressed the dopamine transporter (DAT) gene while one did not (“TH–Vglut2 Class2”), and the remaining population did not express TH at all (“Vglut2-only”). TH is known to be expressed by a promoter which shows two phases of activation, a transient one early during embryonal development, and a later one which gives rise to stable endogenous expression of the TH gene. The transient phase is, however, not specific to catecholaminergic neurons, a feature taken to advantage here as it enabled Vglut2 gene targeting within all three A10 populations expressing this gene, thus creating a new conditional knockout. These knockout mice showed impairment in spatial memory function. Electrophysiological analyses revealed a profound alteration of oscillatory activity in the CA3 region of the hippocampus. In addition to identifying a novel role for Vglut2 in hippocampus function, this study points to the need for improved genetic tools for targeting of the diversity of subpopulations of the A10 area.Electronic supplementary materialThe online version of this article (doi:10.1007/s00429-014-0778-9) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.