In this work, the quality of coatings prepared by plasma electrolytic oxidation (PEO) on an AZ31 magnesium alloy were evaluated. This was done by studying the effects of the chemical composition of phosphate-based process electrolytes in combination with different applied current densities on coating thickness, porosity, micro-cracking and corrosion resistance in 0.1 M NaCl. Both processing parameters were studied in four different levels. Mid-term corrosion resistance in 0.1 M NaCl was examined by electrochemical impedance spectroscopy and based on this, corrosion mechanisms were hypothesized. Results of performed experiments showed that the chosen processing parameters and electrolyte composition significantly influenced the morphology and corrosion performance of the prepared PEO coatings. The PEO coating prepared in an electrolyte with 12 g/L Na3PO4·12H2O and using an applied current density 0.05 A/cm2 reached the highest value of polarization resistance. This was more than 11 times higher when compared to the uncoated counterpart.
In order to increase the corrosion resistance of magnesium alloy AZ91 in corrosion environments containing chlorides, the alloy surface has been modified by plasma electrolytic oxidation (PEO). The chemical composition of electrolyte in the PEO process consisted of 12 g/L Na3PO4·12 H2O and 1 g/L KOH, and a direct current was applied to the sample. The corrosion resistance of PEO coating and as-cast AZ91 (sample without PEO coating) was assessed using two different electrochemical methods: electrochemical impedance spectroscopy (EIS) and potentiodynamic polarisation (PDP) in 0.1 M NaCl at laboratory temperature. In addition to the electrochemical methods, the morphology of the oxidic coating was observed in the cross-sectional and top surface view by using the SEM technique. For better determination of the microstructure and PEO coating, chemical composition EDX analysis was used. The results of the experiments show that the formation of the PEO coating on AZ91 alloy has a more positive effect on the corrosion resistance in 0.1 M NaCl based on electrochemical methods than in the case of the formed coating on AZ31 alloy from the previous study. Based on electrochemical measurements in the selected environment, the formation of PEO coating on AZ91 was accompanied by a significant increase in polarisation resistance after short-term exposure compared to the as-cast surface. The EIS results showed a 73 times higher Rp value for PEO coated AZ91 when compared to the as-cast AZ91. Correspondingly, a 27 times lower icorr value was observed for PEO coated AZ91 than in the case of substrate AZ91 in 0.1 M NaCl. At the same time, the typically porous and inhomogeneous structure of the formed PEO coating on the magnesium alloy AZ91 was demonstrated.
The coating prepared by plasma electrolytic oxidation (PEO) was created on AZ31 magnesium alloy surface with the aim to evaluate its effect on corrosion resistance. The DC current was applied on the sample in solution consisted of 10 g/l Na3PO4·12H2O and 1 g/l KOH. Additional samples were prepared with 2 and 4 minutes of preparation to observe evolution of the PEO coating. Morphology of the coatings was evaluated by scanning electron microscopy and chemical composition was examined by EDX analysis. Electrochemical characteristic were measured by potentiodynamic polarization tests and electrochemical impedance spectroscopy in 0.1 M NaCl at the laboratory temperature. Obtained data were presented in form of potentiodynamic curves and Nyquist diagrams. Results of analysis showed that plasma electrolytic oxidation coating positively influence corrosion resistance of AZ31 magnesium alloy in chosen corrosive environment.
A surface treatment process, composed of plasma electrolytic oxidation (PEO) and sealing by temporary oil preservation system containing corrosion inhibitors, was performed on AZ31 magnesium alloy in order to improve its corrosion resistance in environments containing chlorides. Both atmospheric and immersion conditions were evaluated by electrochemical tests in 0.1M NaCl solution together with salt spray test according to STN EN ISO 9227 standard. The obtained results confirmed significant improvement of corrosion resistance reached by the PEO sealing in aggressive environments compared to the pure PEO coating on AZ31 surface. Hence, such a duplex coating is a very perspective alternative for magnesium alloy applications in severe conditions or for temporary protection of magnesium products coated by the PEO during marine transport.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.