Enteroviral infections go usually unnoticed, even during pregnancy, yet some case histories and mouse experiments indicate that these viruses may be transmitted vertically. More frequently, however, transmission occurs by (fecal) contamination during and shortly after birth. The aim of this study was to investigate the effect of maternal infection in mice (1) on gravidity outcome and (2) on subsequent challenge of the offspring with the same virus. CD1 outbred female mice were infected by the oral route with coxsackievirus B4 strain E2 or mock-infected at days 4, 10, or 17 of gestation. Weight and signs of sickness were noted daily. Pups were infected at day 25 after birth (4 days postweaning). Organs (brain, pancreas, and heart) were analyzed for viral RNA and histopathology. We observed that maternal infection at day 4 or day 17 of gestation had little effect on pregnancy outcome, whereas infection at day 10 affected dams and/or offspring. Infection of pups resulted in severe inflammation of the pancreas, but only when dams were previously infected, especially at day 17. The blood glucose levels were elevated. Because no trace of infection was found at the time of challenge, a role for immunopathology is suggested.
We review type 1 diabetes and host genetic components, as well as epigenetics and viruses associated with type 1 diabetes, with added emphasis on the enteroviruses, which are often associated with triggering the disease. Genus Enterovirus is classified into twelve species of which seven (Enterovirus A, Enterovirus B, Enterovirus C, and Enterovirus D and Rhinovirus A, Rhinovirus B, and Rhinovirus C) are human pathogens. These viruses are transmitted mainly by the fecal-oral route; they may also spread via the nasopharyngeal route. Enterovirus infections are highly prevalent, but these infections are usually subclinical or cause a mild flu-like illness. However, infections caused by enteroviruses can sometimes be serious, with manifestations of meningoencephalitis, paralysis, myocarditis, and in neonates a fulminant sepsis-like syndrome. These viruses are often implicated in chronic (inflammatory) diseases as chronic myocarditis, chronic pancreatitis, and type 1 diabetes. In this review we discuss the currently suggested mechanisms involved in the viral induction of type 1 diabetes. We recapitulate current basic knowledge and definitions.
Coxsackievirus B2 (CVB2), one of six human pathogens of the group B coxsackieviruses within the enterovirus genus of Picornaviridae, causes a wide spectrum of human diseases ranging from mild upper respiratory illnesses to myocarditis and meningitis. The CVB2 prototype strain Ohio-1 (CVB2O) was originally isolated from a patient with summer grippe in the 1950s. Later on, CVB2O was adapted to cytolytic replication in rhabdomyosarcoma (RD) cells. Here, we present analyses of the correlation between the adaptive mutations of this RD variant and the cytolytic infection in RD cells. Using reverse genetics, we identified a single amino acid change within the exposed region of the VP1 protein (glutamine to lysine at position 164) as the determinant for the acquired cytolytic trait. Moreover, this cytolytic virus induced apoptosis, including caspase activation and DNA degradation, in RD cells. These findings contribute to our understanding of the host cell adaptation process of CVB2O and provide a valuable tool for further studies of virus-host interactions.Virus infections depend on complex interactions between viral and cellular proteins. Consequently, the nature of these interactions has important implications for viral cell type specificity, tissue tropism, and pathogenesis. Group B coxsackieviruses (CVB1 to CVB6), members of the genus Enterovirus within the family of Picornaviridae, are human pathogens that cause a broad spectrum of diseases, ranging from mild upper respiratory illnesses to more severe infections of the central nervous system, heart, and pancreas (61). These viruses have also been associated with certain chronic muscle diseases and myocardial infarction (2,3,12,13,22).The positive single-stranded RNA genome (approximately 7,500 nucleotides in length) of CVBs is encapsidated within a small Tϭ1, icosahedral shell (30 nm in diameter) comprised of repeating identical subunits made up of four structural proteins (VP1 to VP4). Parts of VP1, VP2, and VP3 are exposed on the outer surface of the capsid, whereas VP4 is positioned on the interior. The virion morphology is characterized by a star-shaped mesa at each 5-fold icosahedral symmetry axis, surrounded by a narrow depression referred to as the "canyon" (69). All six serotypes of CVB can use the coxsackie and adenovirus receptor (CAR) for cell attachment and entry (9,55,82). Some strains of CVB1, -3, and -5 also use decay accelerating factor ([DAF] CD55) for initial attachment to the host cell; however, binding to DAF alone is insufficient to permit entry into the cell (10, 54, 76).Picornaviruses are generally characterized by their cytolytic nature in cell culture. However, several in vivo and in vitro studies have shown that some picornaviruses, e.g., poliovirus, Theiler's murine encephalomyelitis virus, foot-and-mouth disease virus, CVB3, CVB4, and CVB5, may also establish persistent, noncytolytic infections (4,29,35,39,62,74). Recently, it has been shown that the diverse outcomes of picornaviral infections may depend on interactions between the viru...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations –citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.