Until the eradication of malaria from Europe, members of the Anopheles maculipennis complex had been the major vectors for plasmodial parasites. With the possible reintroduction of Plasmodium species due to climate change and increased travel to and from countries where malaria is endemic, accurate identification of mosquito species will be essential for preventive studies. For this purpose, a diagnostic PCR system to differentiate between six of the seven A. maculipennis sibling species occurring in Europe was developed. The second internal transcribed spacer (ITS2) of the ribosomal DNA was amplified and sequenced for all six species. Based on differences in the nucleotide sequences, species-specific primers were constructed for PCR amplification of mosquito DNA that in combination with a universal primer generate amplification products of different length, each unique for one species.
A polymerase chain reaction (PCR)-based diagnostic assay was developed that rapidly and reliably differentiates the sibling species of the Anopheles claviger complex, An. claviger s.s. and An. petragnani. The assay makes use of nucleotide differences in the internal transcribed spacer 2 ribosomal DNA sequences to generate PCR products of specific length for each of the two species. In evaluating the test, 580 of 592 field-collected An. claviger s.l. specimens were unambiguously identified as one of the two sibling species. Due to poor DNA quality, the remaining 12 specimens yielded no PCR product. Of the 592 mosquitoes, 407 larval specimens had been identified morphologically prior to species-specific DNA amplification, and in all instances PCR identification corroborated with morphologic identification. Mosquitoes identified as An. claviger s.s. came from various localities all over Europe and from Israel. Those identified as An. petragnani were collected in southern France and Spain. The species-diagnostic PCR assay would facilitate data collection on the temporal and spatial distribution of the two An. claviger sibling species because they represent possible vectors of disease in Europe, the Near and Middle East, and north Africa.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.