Vertebral level-dependent, angular, and linear translations of the spine have been measured in 2D and 3D using several imaging methods to quantify postural changes due to loading conditions and tasks. Here, we propose and validate a semiautomated method for measuring lumbar intervertebral angles and translations from upright MRI images using an endplate-based, joint coordinate system (JCS). This method was validated using 3D printed structures, representing intervertebral discs (IVD) at predetermined angles and heights, which were positioned between adjacent cadaveric vertebrae as a gold standard. Excellent agreement between our measurements and the gold standard was found for intervertebral angles in all anatomical planes (ICC > .997) and intervertebral distance measurements (ICC > .949). The proposed endplate-based JCS was compared with the vertebral body-based JCS proposed by the International Society of Biomechanics (ISB) using the 3D printed structures placed between 3 adjacent vertebrae from a cadaver with scoliosis. The endplate-based method was found to have better agreement with angles in the sagittal plane (ICC = 0.985) compared with the vertebral body-based method (ICC = .280). Thus, this method is accurate for measuring 3D intervertebral angles in the healthy and diseased lumbar spine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.