There is now considerable evidence that in Europe, babesiosis is an emerging infectious disease, with some of the causative species spreading as a consequence of the increasing range of their tick vector hosts. In this review, we summarize both the historic records and recent findings on the occurrence and incidence of babesiosis in 20 European countries located in southeastern Europe (Bosnia and Herzegovina, Croatia, and Serbia), central Europe (Austria, the Czech Republic, Germany, Hungary, Luxembourg, Poland, Slovakia, Slovenia, and Switzerland), and northern and northeastern Europe (Lithuania, Latvia, Estonia, Iceland, Denmark, Finland, Sweden, and Norway), identified in humans and selected species of domesticated animals (cats, dogs, horses, and cattle). Recorded cases of human babesiosis are still rare, but their number is expected to rise in the coming years. This is because of the widespread and longer seasonal activity of Ixodes ricinus as a result of climate change and because of the more extensive use of better molecular diagnostic methods. Bovine babesiosis has a re-emerging potential because of the likely loss of herd immunity, while canine babesiosis is rapidly expanding in central and northeastern Europe, its occurrence correlating with the rapid, successful expansion of the ornate dog tick (Dermacentor reticulatus) populations in Europe. Taken together, our analysis of the available reports shows clear evidence of an increasing annual incidence of babesiosis across Europe in both humans and animals that is changing in line with similar increases in the incidence of other tick-borne diseases. This situation is of major concern, and we recommend more extensive and frequent, standardized monitoring using a “One Health” approach.
BackgroundBorrelia burgdorferi sensu lato and Anaplasma phagocytophilum have been considered as pathogens in animals and humans. The role of wild cervids in the epidemiology is not clear. We analyzed questing Ixodes ricinus ticks collected in spring for these pathogens from sites with high (Fjelløyvær and Strøm) and low density (Tjore, Hinnebu and Jomfruland) of wild cervids to study the spread of the pathogens in questing ticks.MethodsFor detection of Anaplasma phagocytophilum a 77-bp fragment in the msp2 gene was used. Detection of Borrelia burgdorferi sensu lato was performed using the FL6 and FL7 primers according to sequences of conserved regions of the fla gene. The OspA gene located on the linear 49-kb plasmid was used as target in multiplex PCR for genotyping. Genospecies-specific primers were used in the PCR for Borrelia burgdorferi sensu stricto, B. afzelii and B. garinii.ResultsInfection rates with Borrelia spp. were significantly lower at Fjelløyvær and Strøm compared to Tjore and Hinnebu; Fjelløyvær vs. Tjore (χ2 = 20.27, p < 0.0001); Fjelløyvær vs. Hinnebu (χ2 = 24.04, p < 0.0001); Strøm vs. Tjore (χ2 = 11.47, p = 0.0007) and Strøm vs. Hinnebu (χ2 = 16.63, p < 0.0001). The Borrelia genospecies were dominated by. B. afzelii (82%) followed by B. garinii (9.7%) and B. burgdorferi sensu stricto (6.9%). B. burgdorferi s.s. was only found on the island of Jomfruland. The infection rate of Anaplasma phagocytophilum showed the following figures; Fjelløyvær vs Hinnebu (χ2 = 16.27, p = 0.0001); Strøm vs. Tjore (χ2 = 13.16, p = 0.0003); Strøm vs. Hinnebu (χ2 = 34.71, p < 0.0001); Fjelløyvær vs. Tjore (χ2 = 3.19, p = 0.0742) and Fjelløyvær vs. Støm (χ2 = 5.06, p = 0.0245). Wild cervids may serve as a reservoir for A. phagocytophilum. Jomfruland, with no wild cervids but high levels of migrating birds and rodents, harboured both B. burgdorferi s.l. and A. phagocytophilum in questing I. ricinus ticks. Birds and rodents may play an important role in maintaining the pathogens on Jomfruland.ConclusionThe high abundance of roe deer and red deer on the Norwegian islands of Fjelløyvær and Strøm may reduce the infection rate of Borrelia burgdorferi sensu lato in host seeking Ixodes ricinus, in contrast to mainland sites at Hinnebu and Tjore with moderate abundance of wild cervids. The infection rate of Anaplasma phagocytophilum showed the opposite result with a high prevalence in questing ticks in localities with a high density of wild cervids compared to localities with lower density.
BackgroundIxodes ricinus ticks transmit Babesia species to vertebrate hosts. Using molecular tools we were able to detect the presence of this piroplasmid in its vector. The aims of this study were to investigate the prevalence and identity of Babesia species in questing ticks collected in various areas of Norway.MethodsDNA from questing l. ricinus ticks were examined with a realtime PCR for the presence of Babesia. Positive samples of tick DNA were identified to species using PCR, and sequence analysis.ResultsFrom a total of 1908 questing l. ricinus ticks, 17 (0.9%) indicated the presence of Babesia spp. after realtime-PCR screening. Ixodes ricinus harbouring Babesia spp. was detected in 9 out of 22 localities. Further molecular analyses of DNA from these positive ticks indicate the presence of Babesia venatorum, B. divergens, B. capreoli and a currently undescribed Babesia in Norwegian ticks. The most prevalent was B. venatorum found in 71% of the positive ticks.ConclusionsA total of 17 out of 1908 (0.9%) ticks were positive for Babesia. Our data confirm that there are several Babesia species in ticks in Norway. Babesia venatorum was the most prevalent. This species has a zoonotic potential and may cause human babesiosis following a tick bite.
Background In Lithuania, the first case of canine subcutaneous dirofilariosis was recorded in 2010. Since then, an increasing number of cases of canine dirofilariosis have been documented in different veterinary clinics throughout the country. Human dirofilariosis was diagnosed in Lithuania for the first time in September 2011. However, to the authors’ knowledge, there are no published data on the presence and prevalence of autochthonous dirofilariosis in dogs and humans in the country. The present study provides information about the predominant species and prevalence of Dirofilaria in dogs and describes the cases of human dirofilariosis in Lithuania. It also outlines PCR detection of the bacterial endosymbiont Wolbachia that contributes to the inflammatory features of filarioid infection. Results A total of 2280 blood samples and six adult worms from pet and shelter dogs were collected in the central and eastern regions of Lithuania in 2013–2015. Based on their morphological appearance, morphometric measurements and molecular analysis, all the adult nematodes were identified as Dirofilaria repens. The diagnosis of microfilariae in blood samples was based on blood smear analysis and Knott’s test. The PCR and sequence analysis of the ribosomal DNA ITS2 region and cox 1 gene confirmed the presence of D. repens . Overall, 61 (2.7%) of the 2280 blood samples were found to be positive for the presence of D. repens. The infection rate of D. repens was significantly higher in shelter dogs (19.0%; 19/100) than in pet dogs (1.9%; 42/2180) ( χ 2 = 100.039, df = 1, P < 0.0001). Forty-nine DNA samples of D. repens -infected dogs were tested for the presence of the bacterial endosymbiont Wolbachia and, of these, 40 samples (81.6%) were found to be positive. Three ocular and six subcutaneous cases of human dirofilariosis were diagnosed in Lithuania in the period 2011–2018. Conclusions To the authors’ knowledge, this is the first report of autochthonous D. repens infection in dogs and humans in Lithuania. The present data demonstrate that D. repens is the main etiological agent of dirofilariosis in Lithuania. The DNA of the filarioid endosymbiotic bacterium Wolbachia was detected in the vast majority of dogs infected with D. repens .
BackgroundRickettsiae are emerging pathogens causing public health problems in many countries around the world. Rickettsia spp. are found in association with a wide range of arthropods which feed on different species of animals. However, the distribution and natural cycle of Rickettsia species and their association with different arthropod vectors are not fully established. The aim of this study was to investigate the presence and prevalence of Rickettsia spp. in ticks, mites and fleas parasitizing different species of small mammals in Lithuania and to molecularly characterize the Rickettsia spp. obtained from different ectoparasites.ResultsA total of 1261 ectoparasites (596 Ixodes ricinus ticks, 550 mites of five species and 115 fleas of eight species) collected from 238 rodents in Lithuania during 2013–2014 were investigated for the presence of Rickettsia pathogens. Infection rates were calculated as the maximum likelihood estimation (MLE) with 95% confidence intervals (CI). The infection rate varied among ectoparasites and was found highest in fleas 43.5%, followed by I. ricinus ticks (MLE = 26.5%; 95% CI: 22.2–31.3%) and then mites (MLE = 9.3%; 95% CI: 7.0–12.2%). Sequence analysis of partial gltA and 17kDa genes revealed the presence of Rickettsia helvetica, R. felis, R. monacensis, Rickettsia sp. and rickettsial endosymbionts. Four Rickettsia spp. were identified in fleas, while three Rickettsia spp. were identified in Laelapidae mites and only one (R. helvetica) in I. ricinus ticks.ConclusionsTo our knowledge, this is the first report of the occurrence and molecular characterization of Rickettsia spp. in 11 species of ectoparasites of small rodents in Lithuania. The present data extend the knowledge on the distribution of Rickettsia spp. and their association with different arthropod vectors. Prior to our study, R. felis had never been identified in Lithuania. To our knowledge, this is also the first report of R. felis in L. agilis and H. microti mites and in Ct. agyrtes and H. talpae fleas, as well as the first detection of R. monacensis in Ct. agyrtes fleas.Electronic supplementary materialThe online version of this article (10.1186/s13071-018-2947-9) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.