Metastatic involvement of axillary lymph nodes is one of the most important prognostic variables in breast cancer. The aim of our work was to study the value of dynamic contrast-enhanced MR imaging in revealing axillary lymph node metastases from breast cancer. A total of 65 patients with invasive breast cancer treated with axillary lymph node dissection were preoperatively evaluated by MRI. T1-weighted dynamic contrast-enhanced 3D images were acquired using a coil covering the breast and the axilla. The dynamic contrast enhancement, size, and morphology of the axillary lymph nodes were registered. Histopathological examination revealed axillary lymph node metastases in 24 patients. When using a signal intensity increase in the lymph nodes of >100% during the first postcontrast image as a threshold for malignancy, 57 of 65 patients were correctly classified (sensitivity 83%, specificity 90%, accuracy 88%). These results were not improved when lymph node size and morphology were used as additional criteria. Axillary lymph nodes can be evaluated as a part of an MR-mammography study without substantial increase in examination time, and provide the surgeon with knowledge about the localization of possible metastatic lymph nodes.
Purpose:To evaluate dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) as a tool for early prediction of response to neoadjuvant chemotherapy (NAC) and 5-year survival in patients with locally advanced breast cancer.Materials and Methods: DCE-MRI was performed in patients scheduled for NAC (n ϭ 24) before and after the first treatment cycle. Clinical response was evaluated after completed NAC. Relative signal intensity (RSI) and area under the curve (AUC) were calculated from the DCE-curves and compared to clinical treatment response. Kohonen and probabilistic neural network (KNN and PNN) analysis were used to predict 5-year survival.Results: RSI and AUC were reduced after only one cycle of NAC in patients with clinical treatment response (P ϭ 0.02 and P ϭ 0.08). The mean and 10th percentile RSI values before NAC were significantly lower in patients surviving more than 5 years compared to nonsurvivors (P ϭ 0.05 and 0.02). This relationship was confirmed using KNN, which demonstrated that patients who remained alive clustered in separate regions from those that died. Calibration of contrast enhancement curves by PNN for patient survival at 5 years yielded sensitivity and specificity for training and testing ranging from 80%-92%.Conclusion: DCE-MRI in locally advanced breast cancer has the potential to predict 5-year survival in a small patient cohort. In addition, changes in tumor vascularization after one cycle of NAC can be assessed.
This is the first study to demonstrate and quantify attenuation of non-haemorrhagic TAI lesions on structural MRI during the first 3 months after TBI; most importantly, the disappearance of brainstem lesions. Haemorrhagic TAI lesions attenuate first after 3 months. Only early MRI findings predicted clinical outcome after adjustment for other prognostic factors. Hence valuable clinical information may be missed if MRI is performed too late after TBI.
Congenital tumors of the central nervous system (CNS) are often arbitrarily divided into "definitely congenital" (present or producing symptoms at birth), "probably congenital" (present or producing symptoms within the first week of life), and "possibly congenital" (present or producing symptoms within the first 6 months of life). They represent less than 2% of all childhood brain tumors. The clinical features of newborns include an enlarged head circumference, associated hydrocephalus, and asymmetric skull growth. At birth, a large head or a tense fontanel is the presenting sign in up to 85% of patients. Neurological symptoms as initial symptoms are comparatively rare. The prenatal diagnosis of congenital CNS tumors, while based on ultrasonography, has significantly benefited from the introduction of prenatal magnetic resonance imaging studies. Teratomas constitute about one third to one half of these tumors and are the most common neonatal brain tumor. They are often immature because of primitive neural elements and, rarely, a component of mixed malignant germ cell tumors. Other tumors include astrocytomas, choroid plexus papilloma, primitive neuroectodermal tumors, atypical teratoid/rhabdoid tumors, and medulloblastomas. Less common histologies include craniopharyngiomas and ependymomas. There is a strong predilection for supratentorial locations, different from tumors of infants and children. Differential diagnoses include spontaneous intracranial hemorrhage that can occur in the presence of coagulation factor deficiency or underlying vascular malformations, and congenital brain malformations, especially giant heterotopia. The prognosis for patients with congenital tumors is generally poor, usually because of the massive size of the tumor. However, tumors can be resected successfully if they are small and favorably located. The most favorable outcomes are achieved with choroid plexus tumors, where aggressive surgical treatment leads to disease-free survival.
ObjectivesEvaluate types and prevalence of all, incidental, and clinically relevant incidental intracranial findings, i.e. those referred to primary physician or clinical specialist, in a cohort between 50 and 66 years from the Nord-Trøndelag Health (HUNT) study. Types of follow-up, outcome of repeated neuroimaging and neurosurgical treatment were assessed.Material and Methods1006 participants (530 women) underwent MRI of the head at 1.5T consisting of T1 weighted sagittal IR-FSPGR volume, axial T2 weighted, gradient echo T2* weighted and FLAIR sequences plus time of flight cerebral angiography covering the circle of Willis. The nature of a finding and if it was incidental were determined from previous radiological examinations, patient records, phone interview, and/or additional neuroimaging. Handling and outcome of the clinically relevant incidental findings were prospectively recorded. True and false positives were estimated from the repeated neuroimaging.ResultsPrevalence of any intracranial finding was 32.7%. Incidental intracranial findings were present in 27.1% and clinically relevant findings in 15.1% of the participants in the HUNT MRI cohort. 185 individuals (18.4%) were contacted by phone about their findings. 40 participants (6.2%) underwent ≥ 1 additional neuroimaging session to establish etiology. Most false positives were linked to an initial diagnosis of suspected glioma, and overall positive predictive value of initial MRI was 0.90 across different diagnoses. 90.8% of the clinically relevant incidental findings were developmental and acquired cerebrovascular pathologies, the remaining 9.2% were intracranial tumors, of which extra-axial tumors predominated. In total, 3.9% of the participants were referred to a clinical specialist, and 11.7% to their primary physician. 1.4% underwent neurosurgery/radiotherapy, and 1 (0.1%) experienced a procedure related postoperative deficit.ConclusionsIn a general population between 50 and 66 years most intracranial findings on MRI were incidental, and >15% of the cohort was referred to clinical-follow up. Hence good routines for handling of findings need to be in place to ensure timely and appropriate handling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.