BackgroundThe new types of mRNA-containing lipid nanoparticle vaccines BNT162b2 and mRNA-1273 and the adenovirus-based vaccine AZD1222 were developed against SARS-CoV-2 and code for its spike (S) protein. Several studies have investigated short-term antibody (Ab) responses after vaccination.ObjectiveHowever, the impact of these new vaccine formats with unclear effects on the long-term Ab response – including isotype, subclass, and their type of Fc glycosylation – is less explored.MethodsHere, we analyzed anti-S Ab responses in blood serum and the saliva of SARS-CoV-2 naïve and non-hospitalized pre-infected subjects upon two vaccinations with different mRNA- and adenovirus-based vaccine combinations up to day 270.ResultsWe show that the initially high mRNA vaccine-induced blood and salivary anti-S IgG levels, particularly IgG1, markedly decrease over time and approach the lower levels induced with the adenovirus-based vaccine. All three vaccines induced, contrary to the short-term anti-S IgG1 response with high sialylation and galactosylation levels, a long-term anti-S IgG1 response that was characterized by low sialylation and galactosylation with the latter being even below the corresponding total IgG1 galactosylation level. Instead, the mRNA, but not the adenovirus-based vaccines induced long-term IgG4 responses – the IgG subclass with inhibitory effector functions. Furthermore, salivary anti-S IgA levels were lower and decreased faster in naïve as compared to pre-infected vaccinees. Predictively, age correlated with lower long-term anti-S IgG titers for the mRNA vaccines. Furthermore, higher total IgG1 galactosylation, sialylation, and bisection levels correlated with higher long-term anti-S IgG1 sialylation, galactosylation, and bisection levels, respectively, for all vaccine combinations.ConclusionIn summary, the study suggests a comparable “adjuvant” potential of the newly developed vaccines on the anti-S IgG Fc glycosylation, as reflected in relatively low long-term anti-S IgG1 galactosylation levels generated by the long-lived plasma cell pool, whose induction might be driven by a recently described TH1-driven B cell response for all three vaccines. Instead, repeated immunization of naïve individuals with the mRNA vaccines increased the proportion of the IgG4 subclass over time which might influence the long-term Ab effector functions. Taken together, these data shed light on these novel vaccine formats and might have potential implications for their long-term efficacy.
To treat the SARS-CoV-2 virus, that enters the body through the respiratory tract, different vaccines in particular against the SARS-CoV-2 spike (S)-protein have been developed or are in the development process. For the BioNTech / Pfizer mRNA vaccine BNT162b2, which is injected twice, protection against COVID-19 has been described for the first weeks after the second vaccination. The underlying mechanisms of defense and the long-term effectiveness of this vaccine against COVID-19 are currently under investigation.
In addition to the induction of systemic antibodies (Abs), Ab responses in the respiratory tract would help to form a first line of defense against SARS-CoV-2. Furthermore, protection depends on Fab-part-dependent neutralizing capacities, however, Fc-part-mediated effector mechanisms might also be important. Long-term defense would be based on the induction of long-lived antibody-producing plasma cells (PCs) and memory B cells.
Here, we established different assays to analyze anti-SARS-CoV-2-S IgG and IgA Abs in blood serum and saliva as well as SARS-CoV-2-S1-reactive IgG and IgA PCs and potential memory B cells in the blood of individuals upon their first immunization with BNT162b2.
We show that the vaccine induces in particular anti-SARS-CoV-2-S IgG1 and IgG3 as well as IgA1 and in some individuals also IgG2 and IgA2 serum Abs. In the saliva, we found no anti-SARS-CoV-2-S IgA, but instead IgG Abs. Furthermore, we found SARS-CoV-2-S reactive IgG+ blood PCs and potential memory B cells as well as SARS-CoV-2-S reactive IgA+ PCs and/or potential memory B cells in some individuals.
Our data suggest that the vaccine induces a promising CD4+ T cell-dependent systemic IgG1 and IgG3 Ab response with IgG+ PCs and potential memory B cells. In addition to the systemic IgG response, the systemic IgA and saliva IgG response might help to improve a first line of defense in the respiratory tract against SARS-CoV-2 and its mutants.
A crucial factor for the development of inflammatory autoimmune diseases is the occurrence of antibodies directed against self-tissues and structures, which leads to damage and inflammation. While little is known about the cause of the development of mis-directed, disease-specific T and B cells and resulting IgG autoantibody responses, there is increasing evidence that their induction can occur years before disease symptoms appear. However, a certain proportion of healthy individuals express specific IgG autoantibodies without disease symptoms and not all subjects who generate autoantibodies may develop disease symptoms. Thus, the development of inflammatory autoimmune diseases seems to involve two steps. Increasing evidence suggests that harmless self-directed T and B cell and resulting IgG autoantibody responses in the pre-autoimmune disease stage might switch to more inflammatory T and B cell and IgG autoantibody responses that trigger the inflammatory autoimmune disease stage. Here, we summarize findings on the transition from the pre-disease to the disease stage and vice versa, e.g. by pregnancy and treatment, with a focus on low-/anti-inflammatory versus pro-inflammatory IgG autoantibody responses, including IgG subclass and Fc glycosylation features. Characterization of biomarkers that identify the transition from the pre-disease to the disease stage might facilitate recognition of the ideal time point of treatment initiation and the development of therapeutic strategies for re-directing inflammatory autoimmune conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.