Genomic imprinting is an epigenetic phenomenon resulting in parent-of-origin-specific gene expression that is regulated by a differentially methylated region. Gene mutations or failures in the imprinting process lead to the development of imprinting disorders, such as Angelman syndrome. The symptoms of Angelman syndrome are caused by the absence of functional UBE3A protein in neurons of the brain. To create a human neuronal model for Angelman syndrome, we reprogrammed dermal fibroblasts of a patient carrying a defined three-base pair deletion in UBE3A into induced pluripotent stem cells (iPSCs). In these iPSCs, both parental alleles are present, distinguishable by the mutation, and express UBE3A. Detailed characterization of these iPSCs demonstrated their pluripotency and exceptional stability of the differentially methylated region regulating imprinted UBE3A expression. We observed strong induction of SNHG14 and silencing of paternal UBE3A expression only late during neuronal differentiation, in vitro. This new Angelman syndrome iPSC line allows to study imprinted gene regulation on both parental alleles and to dissect molecular pathways affected by the absence of UBE3A protein.
We have found that a high iron concentration in solid complete cultivation medium potentiates cell-cell and cell-surface adhesion of the fission yeast Schizosaccharomyces pombe. Spotted giant colonies grown on iron-rich media were found to be more compact and more resistant to washing than those grown on plates with a standard iron content. Furthermore, we have documented that excess environmental iron stimulates the invasive growth of S. pombe (and Saccharomyces cerevisiae). Three-dimensional, branched, washing-resistant structures composed mostly of elongated, but separate fission yeast cells, were formed within the solid agar medium. The degree of both adhesion and invasion displayed a specific, iron concentration-dependent response. Our results suggest a novel link between iron availability and the intensively studied and important fungal virulence factors, adhesion and invasion.
Scientific Reports 6: Article number: 30792; published online: 03 August 2016; updated: 08 March 2018 This Article contains typographical errors. In the Results section, “We reprogrammed primary dermal fibroblasts isolated from a female patient with AS harboring a three-base pair deletion in exon 4 of the UBE3A gene (accession NM_130838)11, and from a normal healthy control person.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.