The direct (eg, radiation, microgravity) and indirect (eg, lifestyle perturbations) effects of spaceflight extend across multiple systems resulting in whole-organism cardiovascular deconditioning. For over 50 years, National Aeronautics and Space Administration has continually enhanced a countermeasures program designed to characterize and offset the adverse cardiovascular consequences of spaceflight. In this review, we provide a historical overview of research evaluating the effects of spaceflight on cardiovascular health in astronauts and outline mechanisms underpinning spaceflight-related cardiovascular alterations. We also discuss how spaceflight could be leveraged for aging, industry, and model systems such as human induced pluripotent stem cell–derived cardiomyocytes, organoid, and organ-on-a-chip technologies. Finally, we outline the increasing opportunities for scientists and clinicians to engage in cardiovascular research in space and on Earth.
Transporting tissues and organs from the site of donation to the patient in need, while maintaining viability, is a limiting factor in transplantation medicine. One way in which the supply chain of organs for transplantation can be improved is to discover novel approaches and technologies that preserve the health of organs outside of the body. The dominant technologies that are currently in use in the supply chain for biological materials maintain tissue temperatures ranging from a controlled room temperature (+25 °C to +15 °C) to cryogenic (−120 °C to −196 °C) temperatures (reviewed in Criswell et al. Stem Cells Transl Med. 2022). However, there are many cells and tissues, as well as all major organs, that respond less robustly to preservation attempts, particularly when there is a need for transport over long distances that require more time. In this perspective article, we will highlight the current challenges and advances in biopreservation aimed at “freezing biological time,” and discuss the future directions and requirements needed in the field.
Advances in regenerative medicine manufacturing continue to be a priority for achieving the full commercial potential of important breakthrough therapies. Equally important will be the establishment of distribution chains that support the transport of live cells and engineered tissues and organs resulting from these advanced biomanufacturing processes. The importance of a well-managed distribution chain for products requiring specialized handling procedures was highlighted during the COVID-19 pandemic and serves as a reminder of the critical role of logistics and distribution in the success of breakthrough therapies. This perspective article will provide insight into current practices and future considerations for creating global distribution chains that facilitate the successful deployment of regenerative medicine therapies to the vast number of patients that would benefit from them worldwide.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.