In this intellectual work, the clinical and educational aspects of dentistry were confronted with practical applications of artificial intelligence (AI). The aim was to provide an up-to-date overview of the upcoming changes and a brief analysis of the influential advancements in the use of AI in dental education since 2020. In addition, this review provides a guide for a dental curriculum update for undergraduate and postgraduate education in the context of advances in AI applications and their impact on dentistry. Unsurprisingly, most dental educators have limited knowledge and skills to assess AI applications, as they were not trained to do so. Also, AI technology has evolved exponentially in recent years. Factual reliability and opportunities with OpenAI Inc.’s ChatGPT are considered critical inflection points in the era of generative AI. Updating curricula at dental institutions is inevitable as advanced deep-learning approaches take over the clinical areas of dentistry and reshape diagnostics, treatment planning, management, and telemedicine screening. With recent advances in AI language models, communication with patients will change, and the foundations of dental education, including essay, thesis, or scientific paper writing, will need to adapt. However, there is a growing concern about its ethical and legal implications, and further consensus is needed for the safe and responsible implementation of AI in dental education.
This scoping review examines the contemporary applications of advanced artificial intelligence (AI) software in orthodontics, focusing on its potential to improve daily working protocols, but also highlighting its limitations. The aim of the review was to evaluate the accuracy and efficiency of current AI-based systems compared to conventional methods in diagnosing, assessing the progress of patients’ treatment and follow-up stability. The researchers used various online databases and identified diagnostic software and dental monitoring software as the most studied software in contemporary orthodontics. The former can accurately identify anatomical landmarks used for cephalometric analysis, while the latter enables orthodontists to thoroughly monitor each patient, determine specific desired outcomes, track progress, and warn of potential changes in pre-existing pathology. However, there is limited evidence to assess the stability of treatment outcomes and relapse detection. The study concludes that AI is an effective tool for managing orthodontic treatment from diagnosis to retention, benefiting both patients and clinicians. Patients find the software easy to use and feel better cared for, while clinicians can make diagnoses more easily and assess compliance and damage to braces or aligners more quickly and frequently.
Within the next decade, artificial intelligence (AI) will fundamentally transform the workflow of modern dental practice. This paper reviews the innovations and new roles of dental assistants in CBCT data management with the support of AI. Its use in 3D data management brings new roles for dental assistants. Cone beam computed tomography (CBCT) technology is, together with intraoral 3D scans and 3D facial scans, commonly used 3D diagnostic in a modern digital dental practice. This paper provides an overview of the potential benefits of AI implementation for semiautomated segmentations in standard medical diagnostic workflows in dental practice. It discusses whether AI tools can enable healthcare professionals to increase their reliability, effectiveness, and usefulness, and addresses the potential limitations and errors that may occur. The paper concludes that current AI solutions can improve current digital workflows including CBCT data management. Automated CBCT segmentation is one of the current trends and innovations. It can assist professionals in obtaining an accurate 3D image in a reduced period of time, thus enhancing the efficiency of the whole process. The segmentation of CBCT serves as a helpful tool for treatment planning as well as communicating the problem to the patient in an understandable way. This paper highlights a high bias risk due to the inadequate sample size and incomplete reporting in many studies. It proposes enhancing dental workflow efficiency and accuracy through AI-supported cbct data management
The current paradigm shift in orthodontic treatment planning is based on facially driven diagnostics. This requires an affordable, convenient, and non-invasive solution for face scanning. Therefore, utilization of smartphones’ TrueDepth sensors is very tempting. TrueDepth refers to front-facing cameras with a dot projector in Apple devices that provide real-time depth data in addition to visual information. There are several applications that tout themselves as accurate solutions for 3D scanning of the face in dentistry. Their clinical accuracy has been uncertain. This study focuses on evaluating the accuracy of the Bellus3D Dental Pro app, which uses Apple’s TrueDepth sensor. The app reconstructs a virtual, high-resolution version of the face, which is available for download as a 3D object. In this paper, sixty TrueDepth scans of the face were compared to sixty corresponding facial surfaces segmented from CBCT. Difference maps were created for each pair and evaluated in specific facial regions. The results confirmed statistically significant differences in some facial regions with amplitudes greater than 3 mm, suggesting that current technology has limited applicability for clinical use. The clinical utilization of facial scanning for orthodontic evaluation, which does not require accuracy in the lip region below 3 mm, can be considered.
This paper explores the impact of Artificial Intelligence (AI) on the role of dental assistants and nurses in orthodontic practices, as there is a gap in understanding the currently evolving impact on orthodontic treatment workflows. The introduction of AI-language models such as ChatGPT 4 is changing patient-office communication and transforming the role of orthodontic nurses. Teledentistry is now heavily reliant on AI implementation in orthodontics. This paper presents the proof of a novel concept: an AI-powered orthodontic workflow that provides new responsibilities for an orthodontic nurse. It also provides a report of an assessment of such a workflow in an orthodontic practice that uses an AI solution called Dental Monitoring over a period of three years. The paper evaluates the benefits and drawbacks of daily automated assessments of orthodontic treatment progress, the impact of AI on personalized care, and the new role of a dental assistant. The paper concludes that AI will improve dental practice through more precise and personalized treatment, bringing new roles and responsibilities for trained medical professionals but raising new ethical and legal issues for dental practices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.