Aplidins is an antitumor agent in phase II clinical trials that induces apoptosis through the sustained activation of Jun N-terminal kinase (JNK). We report that Aplidin s alters glutathione homeostasis increasing the ratio of oxidized to reduced forms (GSSG/GSH). Aplidin s generates reactive oxygen species and disrupts the mitochondrial membrane potential. Exogenous GSH inhibits these effects and also JNK activation and cell death. We found two mechanisms by which Aplidin s activates JNK: rapid activation of Rac1 small GTPase and downregulation of MKP-1 phosphatase. Rac1 activation was diminished by GSH and enhanced by L-buthionine (SR)-sulfoximine, which inhibits GSH synthesis. Downregulation of Rac1 by transfection of small interfering RNA (siRNA) duplexes or the use of a specific Rac1 inhibitor decreased Aplidin s -induced JNK activation and cytotoxicity. Our results show that Aplidin s induces apoptosis by increasing the GSSG/GSH ratio, a necessary step for induction of oxidative stress and sustained JNK activation through Rac1 activation and MKP-1 downregulation.
Dual specificity phosphatase DUSP1 (otherwise known as mitogen-activated phosphatase 1 or MKP-1) dephosphorylates MAPKs, particularly p38, and negatively regulates innate immunity. Recent studies have shown that the DUSP1 gene is transcriptionally up-regulated by glucocorticoids (GCs) and that the antiinflammatory action of GCs is impaired in DUSP1-/- mice. Here we show that GC-mediated dephosphorylation of ERK-1 and ERK-2 activated by IgE receptor cross-linking is unimpaired in bone marrow-derived mast cells (BMMCs) of DUSP1-/- mice. Dephosphorylation of phospho-p38 MAPK is impaired but only at early times of GC treatment. Proinflammatory cytokine and chemokine gene expression (CCL2, IL-6, TNFalpha) is still down-regulated by GCs in BMMCs from DUSP1-/- mice, suggesting a compensatory mechanism for the GC action in these mice. In both DUSP1+/+ and DUSP1-/- BMMCs, GC up-regulated the expression of several phosphatase genes (DUSP2, DUSP4, DUSP9, and PEST domain-enriched tyrosine phosphatase). DUSP1-/- mice show enhanced mast cell degranulation and are highly susceptible to anaphylaxis, but these effects are still down-regulated by GCs. GCs also repressed other inflammatory responses such as dinitrofluorobenzene-induced contact hypersensitivity and lipopolysaccharide-induced mortality in DUSP1-/- mice. Thus GC-mediated antiinflammatory action is largely independent of DUSP1.
The term activator protein (AP)-1 describes homodimeric and heterodimeric transcription factors composed of members of the Jun, Fos, and cAMP response element-binding protein (CREB)/activating transcription factor (ATF) families of proteins. Distinct AP-1 dimers, for instance the prototypical c-Jun:c-Fos and c-Jun:ATF2 dimers, are differentially regulated by signaling pathways and bind related yet distinct response elements in the regulatory regions of AP-1 target genes. Little is known about the dimer-specific regulation of AP-1 activity at the promoter of its target genes. We have previously shown that nTrip6, the nuclear isoform of the LIM domain protein Trip6, acts as an AP-1 coactivator. Moreover, nTrip6 is an essential component of glucocorticoid receptor (GR)-mediated trans-repression of AP-1, in that it mediates the tethering of GR to the promoter-bound AP-1. We have now discovered a striking specificity of nTrip6 actions determined by the binding preference of its LIM domains. We show that nTrip6 interacts only with Fos family members. Consequently, nTrip6 is a selective coactivator for AP-1 dimers containing Fos. nTrip6 also assembles activated GR to c-Jun:c-Fos-driven promoters. Neither nTrip6 nor GR are recruited to a promoter occupied by c-Jun:ATF2. Thus, only Fos-containing dimers are trans-repressed by GR. Thus, the dimer composition of AP-1 determines the mechanism of both the positive and negative regulation of AP-1 transcriptional activity. Interestingly, on a second level of action, GR represses the increase in transcriptional activity of c-Jun:ATF2 induced by c-Jun N-terminal kinase (JNK)-dependent phosphorylation. This repression depends on GR-mediated induction of MAPK phosphatase 1 (MKP-1) expression, which results in c-Jun N-terminal kinase inactivation.
MAPK phosphatase-1 (DUSP1/MKP-1) is a mitogen and stress-inducible dual specificity protein phosphatase, which can inactivate all three major classes of MAPK in mammalian cells. DUSP1/MKP-1 is implicated in cellular protection against a variety of genotoxic insults including hydrogen peroxide, ionizing radiation, and cisplatin, but its role in the interplay between different MAPK pathways in determining cell death and survival is not fully understood. We have used pharmacological and genetic tools to demonstrate that DUSP1/MKP-1 is an essential non-redundant regulator of UV-induced cell death in mouse embryo fibroblasts (MEFs). The induction of DUSP1/MKP-1 mRNA and protein in response to UV radiation is mediated by activation of the p38α but not the JNK1 or JNK2 MAPK pathways. Furthermore, we identify MSK1 and -2 and their downstream effectors cAMP-response element-binding protein/ATF1 as mediators of UV-induced p38α-dependent DUSP1/MKP-1 transcription. Dusp1/Mkp-1 null MEFs display increased signaling through both the p38α and JNK MAPK pathways and are acutely sensitive to UV-induced apoptosis. This lethality is rescued by the reintroduction of wild-type DUSP1/MKP-1 and by a mutant of DUSP1/MKP-1, which is unable to bind to either p38α or ERK1/2, but retains full activity toward JNK. Importantly, whereas small interfering RNA-mediated knockdown of DUSP1/MKP-1 sensitizes wild-type MEFs to UV radiation, DUSP1/MKP-1 knockdown in MEFS lacking JNK1 and -2 does not result in increased cell death. Our results demonstrate that cross-talk between the p38α and JNK pathways mediated by induction of DUSP1/MKP-1 regulates the cellular response to UV radiation.
PAGE 25935:We have just become aware that during the preparation of panel A of Fig. 6, which involved the compilation of multiple Western blot scans in Adobe Photoshop, an error resulted in the duplication of one image for the control antibody (p38, third panels from the top) such that it appears in both the left and right panels of the figure. The corrected figure is shown below. The sequence we reported for our Akt2 splice morpholino (targeting the exon splice donor site of exon 10) was AACTTACCGCAAACA-GAAACGTCGA. This is incorrect; unfortunately, we reported the complement of the sequence as opposed to the reverse complement. The correct sequence for the Akt2 splice morpholino is AGCTG-CAAAGACAAACGCCATTCAA. VOLUME 286 (2011) ADDITIONS AND CORRECTIONS This paper is available online at www.jbc.orgWe suggest that subscribers photocopy these corrections and insert the photocopies in the original publication at the location of the original article. Authors are urged to introduce these corrections into any reprints they distribute. Secondary (abstract) services are urged to carry notice of these corrections as prominently as they carried the original abstracts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.