Insufficient dietary intake of micronutrients, known as "hidden hunger", is a devastating global burden, affecting two billion people. Deficiency of folates (vitamin B9), which are known to play a central role in C metabolism, causes birth defects in at least a quarter million people annually. Biofortification to enhance the level of naturally occurring folates in crop plants, proves to be an efficient and cost-effective tool in fighting folate deficiency. Previously, introduction of folate biosynthesis genes GTPCHI and ADCS, proven to be a successful biofortification strategy in rice and tomato, turned out to be insufficient to adequately increase folate levels in potato tubers. Here, we provide a proof of concept that additional introduction of HPPK/DHPS and/or FPGS, downstream genes in mitochondrial folate biosynthesis, enables augmentation of folates to satisfactory levels (12-fold) and ensures folate stability upon long-term storage of tubers. In conclusion, this engineering strategy can serve as a model in the creation of folate-accumulating potato cultivars, readily applicable in potato-consuming populations suffering from folate deficiency.
Thiamin (or thiamine) is a water-soluble B-vitamin (B1), which is required, in the form of thiamin pyrophosphate (TPP), as an essential cofactor in crucial carbon metabolism reactions in all forms of life. To ensure adequate metabolic functioning, humans rely on a sufficient dietary supply of thiamin. Increasing thiamin levels in plants via metabolic engineering is a powerful strategy to alleviate vitamin B1 malnutrition and thus improve global human health. These engineering strategies rely on comprehensive knowledge of plant thiamin metabolism and its regulation. Here, multiple metabolic engineering strategies were examined in the model plant Arabidopsis thaliana. This was achieved by constitutive overexpression of the three biosynthesis genes responsible for B1 synthesis, HMP-P synthase (THIC), HET-P synthase (THI1) and HMP-P kinase/TMP pyrophosphorylase (TH1), either separate or in combination. By monitoring the levels of thiamin, its phosphorylated entities, and its biosynthetic intermediates, we gained insight into the effect of either strategy on thiamin biosynthesis. Moreover, expression analysis of thiamin biosynthesis genes showed the plant’s intriguing ability to respond to alterations in the pathway. Overall, we revealed the necessity to balance the pyrimidine and thiazole branches of thiamin biosynthesis and assessed its biosynthetic intermediates. Furthermore, the accumulation of non-phosphorylated intermediates demonstrated the inefficiency of endogenous thiamin salvage mechanisms. These results serve as guidelines in the development of novel thiamin metabolic engineering strategies.
Summary Rice is a major food crop to approximately half of the human population. Unfortunately, the starchy endosperm, which is the remaining portion of the seed after polishing, contains limited amounts of micronutrients. Here, it is shown that this is particularly the case for thiamin (vitamin B1). Therefore, a tissue‐specific metabolic engineering approach was conducted, aimed at enhancing the level of thiamin specifically in the endosperm. To achieve this, three major thiamin biosynthesis genes, THIC, THI1 and TH1, controlled by strong endosperm‐specific promoters, were employed to obtain engineered rice lines. The metabolic engineering approaches included ectopic expression of THIC alone, in combination with THI1 (bigenic) or combined with both THI1 and TH1 (trigenic). Determination of thiamin and thiamin biosynthesis intermediates reveals the impact of the engineering approaches on endosperm thiamin biosynthesis. The results show an increase of thiamin in polished rice up to threefold compared to WT, and stable upon cooking. These findings confirm the potential of metabolic engineering to enhance de novo thiamin biosynthesis in rice endosperm tissue and aid in steering future biofortification endeavours.
Arabidopsis thaliana serves as a model plant for genetic research, including vitamin research. When aiming at engineering the thiamine (vitamin B1) pathway in plants, the availability of tools that allow the quantitative determination of different intermediates in the biosynthesis pathway is of pivotal importance. This is a challenge, given the nature of the compounds and the minute quantities of genetically engineered material that may be available for analysis. Here, we report on the first LC–MS/MS method for the simultaneous quantification of thiamine, its mono- and diphosphate derivatives and its precursors 4-methyl-5-(2-hydroxyethyl) thiazole (HET) and 4-amino-2-methyl-5-hydroxymethylpyrimidine (HMP). This method was optimized and validated for the quantitative determination of these analytes in Arabidopsis thaliana. All analytes were chromatographically separated within less than 2.5 min during an 8 min run. No unacceptable interferences were found. The method was fully validated based on international guidelines. Accuracy (%bias) and total imprecision (%CV) were within preset acceptance criteria for all analytes in both QC and real samples. All analytes were stable in extracted samples when stored for 48 h at 4 °C (autosampler stability) and when reanalyzed after storage at −80 °C and −20 °C for 2 weeks (freeze/thaw stability). We demonstrated the start material should be stored at −80 °C to ensure stability of all analytes during short- and long-term storage (up to 3 months). The validity and applicability of the developed procedure was demonstrated via its successful application on Arabidopsis lines, genetically engineered to enhance thiamine content.
Thiamin (or thiamine), known as vitamin B1, represents an indispensable component of human diets, being pivotal in energy metabolism. Thiamin research depends on adequate vitamin quantification in plant tissues. A recently developed quantitative liquid chromatography-tandem mass spectrometry (LC-MS/MS) method is able to assess the level of thiamin, its phosphorylated entities and its biosynthetic intermediates in the model plant Arabidopsis thaliana, as well as in rice. However, their implementation requires expensive equipment and substantial technical expertise. Microbiological assays can be useful in determining metabolite levels in plant material and provide an affordable alternative to MS-based analysis.Here, we evaluate, by comparison to the LC-MS/MS reference method, the potential of a carefully chosen panel of yeast assays to estimate levels of total vitamin B1, as well as its biosynthetic intermediates pyrimidine and thiazole in Arabidopsis samples.The examined panel of Saccharomyces cerevisiae mutants was, when implemented in microbiological assays, capable of correctly assigning a series of wild-type and thiamin biofortified Arabidopsis plant samples.The assays provide a readily applicable method allowing rapid screening of vitamin B1 (and its biosynthetic intermediates) content in plant material, which is particularly useful in metabolic engineering approaches and in germplasm screening across or within species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.