Cognitive dysfunction and reactive microglia are hallmarks of traumatic brain injury (TBI), yet whether these cells contribute to cognitive deficits and secondary inflammatory pathology remains poorly understood. Here, we show that removal of microglia from the mouse brain has little effect on the outcome of TBI, but inducing the turnover of these cells through either pharmacologic or genetic approaches can yield a neuroprotective microglial phenotype that profoundly aids recovery. The beneficial effects of these repopulating microglia are critically dependent on interleukin-6 (IL-6) trans-signaling via the soluble IL-6 receptor (IL-6R) and robustly support adult neurogenesis, specifically by augmenting the survival of newborn neurons that directly support cognitive function. We conclude that microglia in the mammalian brain can be manipulated to adopt a neuroprotective and pro-regenerative phenotype that can aid repair and alleviate the cognitive deficits arising from brain injury.
Spatial Transcriptomics is an emerging technology that adds spatial dimensionality and tissue morphology to the genome-wide transcriptional profile of cells in an undissociated tissue. Integrating these three types of data creates a vast potential for deciphering novel biology of cell types in their native morphological context. Here we developed innovative integrative analysis approaches to utilise all three data types to first find cell types, then reconstruct cell type evolution within a tissue, and search for tissue regions with high cell-to-cell interactions. First, for normalisation of gene expression, we compute a distance measure using morphological similarity and neighbourhood smoothing. The normalised data is then used to find clusters that represent transcriptional profiles of specific cell types and cellular phenotypes. Clusters are further sub-clustered if cells are spatially separated. Analysing anatomical regions in three mouse brain sections and 12 human brain datasets, we found the spatial clustering method more accurate and sensitive than other methods. Second, we introduce a method to calculate transcriptional states by pseudo-space-time (PST) distance. PST distance is a function of physical distance (spatial distance) and gene expression distance (pseudotime distance) to estimate the pairwise similarity between transcriptional profiles among cells within a tissue. We reconstruct spatial transition gradients within and between cell types that are connected locally within a cluster, or globally between clusters, by a directed minimum spanning tree optimisation approach for PST distance. The PST algorithm could model spatial transition from non-invasive to invasive cells within a breast cancer dataset. Third, we utilise spatial information and gene expression profiles to identify locations in the tissue where there is both high ligand-receptor interaction activity and diverse cell type co-localisation. These tissue locations are predicted to be hotspots where cell-cell interactions are more likely to occur. We detected tissue regions and ligand-receptor pairs significantly enriched compared to background distribution across a breast cancer tissue. Together, these three algorithms, implemented in a comprehensive Python software stLearn, allow for the elucidation of biological processes within healthy and diseased tissues. 14/18
Reasons for the progressive age-related loss of skeletal muscle mass and function, namely sarcopenia, are complex. Few studies describe sarcopenia in mice, although this species is the mammalian model of choice for genetic intervention and development of pharmaceutical interventions for muscle degeneration. One factor, important to sarcopenia-associated neuromuscular change, is myofibre denervation. Here we describe the morphology of the neuromuscular compartment in young (3 month) compared to geriatric (29 month) old female C57Bl/6J mice. There was no significant difference in the size or number of motoneuron cell bodies at the lumbar level (L1–L5) of the spinal cord at 3 and 29 months. However, in geriatric mice, there was a striking increase (by ∼2.5 fold) in the percentage of fully denervated neuromuscular junctions (NMJs) and associated deterioration of Schwann cells in fast extensor digitorum longus (EDL), but not in slow soleus muscles. There were also distinct changes in myofibre composition of lower limb muscles (tibialis anterior (TA) and soleus) with a shift at 29 months to a faster phenotype in fast TA muscle and to a slower phenotype in slow soleus muscle. Overall, we demonstrate complex changes at the NMJ and muscle levels in geriatric mice that occur despite the maintenance of motoneuron cell bodies in the spinal cord. The challenge is to identify which components of the neuromuscular system are primarily responsible for the marked changes within the NMJ and muscle, in order to selectively target future interventions to reduce sarcopenia.
Exercise has been shown to positively augment adult hippocampal neurogenesis; however, the cellular and molecular pathways mediating this effect remain largely unknown. Previous studies have suggested that microglia may have the ability to differentially instruct neurogenesis in the adult brain. Here, we used transgenic Csf1r-GFP mice to investigate whether hippocampal microglia directly influence the activation of neural precursor cells. Our results revealed that an exercise-induced increase in neural precursor cell activity was mediated via endogenous microglia and abolished when these cells were selectively removed from hippocampal cultures. Conversely, microglia from the hippocampi of animals that had exercised were able to activate latent neural precursor cells when added to neurosphere preparations from sedentary mice. We also investigated the role of CX 3 CL1, a chemokine that is known to provide a more neuroprotective microglial phenotype. Intraparenchymal infusion of a blockingantibodyagainsttheCX 3 CL1receptor,CX 3 CR1,butnotcontrolIgG,dramaticallyreducedtheneurosphereformationfrequencyinmice thathadexercised.WhileanincreaseinsolubleCX 3 CL1wasobservedfollowingrunning,reducedlevelsofthischemokinewerefoundintheaged brain.LowerlevelsofCX 3 CL1withadvancingagecorrelatedwiththenaturaldeclineinneuralprecursorcellactivity,astatethatcouldbepartially alleviated through removal of microglia. These findings provide the first direct evidence that endogenous microglia can exert a dual and opposing influence on neural precursor cell activity within the hippocampus, and that signaling through the CX 3 CL1-CX 3 CR1 axis critically contributes toward this process.
It is now widely accepted that hippocampal neurogenesis underpins critical cognitive functions, such as learning and memory. To assess the behavioral importance of adult-born neurons, we developed a novel knock-in mouse model that allowed us to specifically and reversibly ablate hippocampal neurons at an immature stage. In these mice, the diphtheria toxin receptor (DTR) is expressed under control of the doublecortin (DCX) promoter, which allows for specific ablation of immature DCX-expressing neurons after administration of diphtheria toxin while leaving the neural precursor pool intact. Using a spatially challenging behavioral test (a modified version of the active place avoidance test), we present direct evidence that immature DCX-expressing neurons are required for successful acquisition of spatial learning, as well as reversal learning, but are not necessary for the retrieval of stored long-term memories. Importantly, the observed learning deficits were rescued as newly generated immature neurons repopulated the granule cell layer upon termination of the toxin treatment. Repeat (or cyclic) depletion of immature neurons reinstated behavioral deficits if the mice were challenged with a novel task. Together, these findings highlight the potential of stimulating neurogenesis as a means to enhance learning.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.