Concurrent Kleene Algebra (CKA) extends basic Kleene algebra with a parallel composition operator, which enables reasoning about concurrent programs. However, CKA fundamentally misses tests, which are needed to model standard programming constructs such as conditionals and while-loops. It turns out that integrating tests in CKA is subtle, due to their interaction with parallelism. In this paper we provide a solution in the form of Concurrent Kleene Algebra with Observations (CKAO). Our main contribution is a completeness theorem for CKAO. Our result resorts on a more general study of CKA "with hypotheses", of which CKAO turns out to be an instance: this analysis is of independent interest, as it can be applied to extensions of CKA other than CKAO. PreliminariesWe recall basic definitions on pomset languages, used in the semantics of CKA, which generalise languages to allow letters in words to be partially ordered. We fix a (possibly infinite) alphabet Σ. When defining sets parametrised by Σ, say S(Σ), if Σ is clear from the context we use S to refer to S(Σ). Pomsets [9,10] are labelled posets, up to isomorphism. Posets and PomsetsDefinition 2.1 (Labellet poset). A labelled poset over Σ is a tuple u = S, ≤, λ , where S is a finite set (the carrier of u), ≤ u is a partial order on S (the order of u), and λ : S → Σ is a function (the labelling of u).
Kleene algebra with tests (KAT ) is an algebraic framework for reasoning about the control flow of sequential programs. Generalising KAT to reason about concurrent programs is not straightforward, because axioms native to KAT in conjunction with expected axioms for concurrency lead to an anomalous equation. In this paper, we propose Kleene algebra with observations (KAO), a variant of KAT, as an alternative foundation for extending KAT to a concurrent setting. We characterise the free model of KAO, and establish a decision procedure w.r.t. its equational theory. ACM Subject Classification Theory of computation → Formal languages and automata theoryKeywords and phrases Concurrent Kleene algebra, Kleene algebra with tests, free model, axiomatisation, decision procedure
In the literature on Kleene algebra, a number of variants have been proposed which impose additional structure specified by a theory, such as Kleene algebra with tests (KAT) and the recent Kleene algebra with observations (KAO), or make specific assumptions about certain constants, as for instance in NetKAT. Many of these variants fit within the unifying perspective offered by Kleene algebra with hypotheses, which comes with a canonical language model constructed from a given set of hypotheses. For the case of KAT, this model corresponds to the familiar interpretation of expressions as languages of guarded strings. A relevant question therefore is whether Kleene algebra together with a given set of hypotheses is complete with respect to its canonical language model. In this paper, we revisit, combine and extend existing results on this question to obtain tools for proving completeness in a modular way. We showcase these tools by reproving completeness of KAT and KAO, and prove completeness of a new variant of KAT where the collection of tests only forms a distributive lattice.
Synchronous Kleene algebra (SKA), an extension of Kleene algebra (KA), was proposed by Prisacariu as a tool for reasoning about programs that may execute synchronously, i.e., in lock-step. We provide a countermodel witnessing that the axioms of SKA are incomplete w.r.t. its language semantics, by exploiting a lack of interaction between the synchronous product operator and the Kleene star. We then propose an alternative set of axioms for SKA, based on Salomaa's axiomatisation of regular languages, and show that these provide a sound and complete characterisation w.r.t. the original language semantics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.