The persistence of a high-risk Human papillomavirus (HPV-HR) infection of the cervix results in different manifestations of lesions depending on the immunologic capacity of the host. Variations in apolipoprotein B mRNA editing enzyme catalytic polypeptide (APOBEC)-like genes, such as the APOBEC3A/B deletion hybrid polymorphism (A3A/B), may contribute to cervical malignancy in the presence of HPV. The aim of this study was to investigate the association between the A3A/B polymorphism and HPV infection and the development of cervical intraepithelial lesions and cervical cancer in Brazilian women. The study enrolled 369 women, who were categorized according to the presence of infection and subdivided according to the degree of intraepithelial lesion and cervical cancer. APOBEC3A/B was genotyped by allele-specific polymerase chain reaction (PCR). As for the A3A/B polymorphism, the distribution of genotypes was similar between groups and among the analyzed subgroups. There were no significant differences in the presence of infection or development of lesions, even after exclusion of confounding factors. This is the first study to show that the A3A/B polymorphism is not associated with HPV infection and the development of intraepithelial lesions and cervical cancer in Brazilian women.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.