We demonstrate that the interaction between miR-450a-5p and miR-28-5p and signal transducer and activator of transcription 1 (STAT1) mRNA correlates with the osteoblastic differentiation of mesenchymal stem cells from human exfoliated deciduous teeth (shed cells). STAT1 negatively regulates runx-related transcription factor 2 (RUNX2), which is an essential transcription factor in this process. However, the elements that trigger osteoblastic differentiation and therefore pause the inhibitory effect of STAT1 need investigation. Usually, STAT1 can be posttranscriptionally regulated by miRNAs. To test this, we used an in vitro model system in which shed cells were chemically induced toward osteoblastic differentiation and temporally analyzed, comparing undifferentiated cells with their counterparts in the early (2 days) or late (7 or 21 days) periods of induction. The definition of the entire functional genome expression signature demonstrated that the transcriptional activity of a large set of mRNAs and miRNAs changes during this process. Interestingly, STAT1 and RUNX2 mRNAs feature contrasting expression levels during the course of differentiation. While undifferentiated or early differentiating cells express high levels of STAT1 mRNA, which was gradually downregulated, RUNX2 mRNA was upregulated toward differentiation. The reconstruction of miRNA-mRNA interaction networks allowed the identification of six miRNAs (miR-17-3p, miR-28-5p, miR-29b, miR-29c-5p, miR-145-3p, and miR-450a-5p), and we predicted their respective targets, from which we focused on miR-450a-5p and miR-28-5p STAT1 mRNA interactions, whose intracellular occurrence was validated through the luciferase assay. Transfections of undifferentiated shed cells with miR-450a-5p or miR-28-5p mimics or with miR-450a-5p or miR-28-5p antagonists demonstrated that these miRNAs might play a role as posttranscriptional controllers of STAT1 mRNA during osteoblastic differentiation. J. Cell. Biochem. 118: 4045-4062, 2017. © 2017 Wiley Periodicals, Inc.
Background Nerve injuries are debilitating, leading to long-term motor deficits. Remyelination and axonal growth are supported and enhanced by growth factor and cytokines. Combination of nerve guidance conduits (NGCs) with adipose-tissue-derived multipotent mesenchymal stromal cells (AdMSCs) has been performing promising strategy for nerve regeneration. Methods 3D-printed polycaprolactone (PCL)-NGCs were fabricated. Wistar rats subjected to critical sciatic nerve damage (12-mm gap) were divided into sham, autograft, PCL (empty NGC), and PCL + MSCs (NGC multi-functionalized with 106 canine AdMSCs embedded in heterologous fibrin biopolymer) groups. In vitro, the cells were characterized and directly stimulated with interferon-gamma to evaluate their neuroregeneration potential. In vivo, the sciatic and tibial functional indices were evaluated for 12 weeks. Gait analysis and nerve conduction velocity were analyzed after 8 and 12 weeks. Morphometric analysis was performed after 8 and 12 weeks following lesion development. Real-time PCR was performed to evaluate the neurotrophic factors BDNF, GDNF, and HGF, and the cytokine and IL-10. Immunohistochemical analysis for the p75NTR neurotrophic receptor, S100, and neurofilament was performed with the sciatic nerve. Results The inflammatory environment in vitro have increased the expression of neurotrophins BDNF, GDNF, HGF, and IL-10 in canine AdMSCs. Nerve guidance conduits multi-functionalized with canine AdMSCs embedded in HFB improved functional motor and electrophysiological recovery compared with PCL group after 12 weeks. However, the results were not significantly different than those obtained using autografts. These findings were associated with a shift in the regeneration process towards the formation of myelinated fibers. Increased immunostaining of BDNF, GDNF, and growth factor receptor p75NTR was associated with the upregulation of BDNF, GDNF, and HGF in the spinal cord of the PCL + MSCs group. A trend demonstrating higher reactivity of Schwann cells and axonal branching in the sciatic nerve was observed, and canine AdMSCs were engrafted at 30 days following repair. Conclusions 3D-printed NGCs multi-functionalized with canine AdMSCs embedded in heterologous fibrin biopolymer as cell scaffold exerted neuroregenerative effects. Our multimodal approach supports the trophic microenvironment, resulting in a pro-regenerative state after critical sciatic nerve injury in rats.
Information technology (IT) is ubiquitous in recent human existence. The aim of this article is to present some basic concepts and specific demands that biofabrication may place on IT. Some of these technologies are already available, with a need for improvement, while others will need to be newly developed. Technologies that clearly, precisely and unambiguously specify a tissue or organ are unavailable. A move from expensive in vitro and in vivo assays toward in silico technologies will allow for exhaustive tests and optimization of human substitutes by means of computer biological systems. To complete this substitution, biofabrication lines shall be established; integrating what was planned and designed into physical processes executed by automatic machines. Biofabrication will impose great challenges, since many tools will need to be developed by engineers together with biologists. Many other concerns and challenges will be faced in the path to an autonomous biofabrication line, including cybernetic and biological safety issues. Therefore, the main aim of this paper is to shed some light and establish a primary nexus between the present and future applications of IT in biofabrication.
Bioprinting is the utilization of techniques derived from three-dimensional printing to generate complex biological structures which may replace natural tissues or organs. It employs high spatial resolution deposition of different cell types, growth factors and biomaterials. Those together form bioinks, which are the bioprinting inputs, analogously to conventional inks with regard to inkjet printing. In extrusion bioprinting, continuous bioink filaments are deposited layer by layer on a surface by means of an extruder nozzle, employing the displacement of a piston or pneumatic pressure. If mechanical stresses applied on a cell membrane exceed a critical value, which depends on the cell type, the cell membrane may disrupt. Computational fluid dynamics (CFD) simulations of the bioink extrusion were done to evaluate shear stresses caused by the internal pressure of extruder nozzles during bioprinting. Different three-dimensional conical nozzle designs were tested by varying angles of convergence, lengths, input diameters and output diameters of the nozzles. The powerlaw model, with constants k = 109.73 Pa•s 0,154 and n = 0.154, was used to describe the expected non-Newtonian behavior of the bioink. Shear stresses and shear rates were evaluated for each nozzle design considering different pressures or velocities as boundary conditions at the nozzle entrance. The maximum wall shear stress value on each different nozzle varied between 1,038 Pa and 4,915 Pa. The results indicated which details of nozzle geometry are most relevant in order to optimize bioprinting. The best conditions for bioink rheology were also evaluated to ensure good printability and high cell viability.
Investigation on functional genome research may contribute to the knowledge of functional roles of different mRNAs and miRNAs in bone cells of osteoporotic animals. Currently, few studies indicate the changes in gene modulation that osteoporosis causes in osteoblastic cells from different sites. Thus, the purpose of this investigation was to evaluate cell viability, alkaline phosphatase activity and modulation of mRNAs/miRNAs in osteoblastic cells from calvaria and bone marrow by means of microarray technology. Wistar female rats were divided in sham operated and ovariectomized groups. After 150 days of ovariectomy, cells were isolated from both sites to perform cell culture. Results showed that calvaria cells from ovariectomized rats had a decrease in viability when compared to control groups and to bone marrow cells from osteoporotic rats after 3 days. Alkaline phosphatase activity decreased in calvaria cells from ovariectomized rats whereas it was increased in bone marrow osteoblastic cells in the same group. Microarray data analysis showed 5447 differentially expressed mRNAs and 82 differentially expressed miRNAs in calvaria cells. The same way, 4399 mRNAs and 54 miRNAs were expressed in bone marrow cells. mRNAs associated with bone metabolism such as Anxa5, Sp7, Spp1, Notch1 were distinctively modulated in both sites, as well as miRNAs such as miR-350, miR-542-3p, miR-204-5p, and miR-30e-3p. The RNA species identified in this study could be further used as targets for treatment or prevention of osteoporosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.