Enterprises often classify their customers based on the degree of profitability in decreasing order like C1, C2, ..., Cn. Generally, customers representing class Cn are zero profitable since they migrate to the competitor. They are called as attritors (or churners) and are the prime reason for the huge losses of the enterprises. Nevertheless, customers of other intermediary classes are reluctant and offer an insignificant amount of profits in different degrees and lead to uncertainty. Various data mining models like decision trees, etc., which are built using the customers’ profiles, are limited to classifying the customers as attritors or non-attritors only and not providing profitable actionable knowledge. In this paper, we present an efficient algorithm for the automatic extraction of profit-maximizing knowledge for business applications with multi-class customers by postprocessing the probability estimation decision tree (PET). When the PET predicts a customer as belonging to any of the lesser profitable classes, then, our algorithm suggests the cost-sensitive actions to change her/him to a maximum possible higher profitable status. In the proposed novel approach, the PET is represented in the compressed form as a Bit patterns matrix and the postprocessing task is performed on the bit patterns by applying the bitwise AND operations. The computational performance of the proposed method is strong due to the employment of effective data structures. Substantial experiments conducted on UCI datasets, real Mobile phone service data and other benchmark datasets demonstrate that the proposed method remarkably outperforms the state-of-the-art methods.
So far, most of the research on classification algorithms in machine learning has been focused only on improving the training speed and further improving the technical performance evaluation measures of the constructed models. There is no focus on improving the runtime efficiency of the classification phase which is much required in some critical applications. In this paper, we are considering the computation complexity of a decision tree's classification phase as the major criterion. A novel approach has been proposed to predict the class label of an unseen instance using the decision tree in less time than the regular tree traversal method. In the proposed method, the constructed decision tree is represented in the form of arrays. Then, the process of finding the class label is carried out by performing the bitwise operations between the elements of the arrays and test instance. Empirical results on various UCI data sets proved that the proposed method outperforms the standard method and five other benchmark classifiers and its classification is at least four times faster than the regular method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.