Supervised learning is a classic data mining problem where one wishes to be be able to predict an output value associated with a particular input vector. We present a new twist on this classic problem where, instead of having the training set contain an individual output value for each input vector, the output values in the training set are only given in aggregate over a number of input vectors. This new problem arose from a particular need in learning on mass spectrometry data, but could easily apply to situations when data has been aggregated in order to maintain privacy. We provide a formal description of this new problem for both classification and regression. We then examine how k-nearest neighbor, neural networks, and support vector machines can be adapted for this problem.
Our evaluation answers questions regarding these systems, including, can SRL extractors, which are trained on PropBank, cope with heterogeneous text found on the Web? Which extractor attains better precision, recall, f-measure, or running time? How does extractor performance vary for binary, n-ary and nested relations? How much do we gain by running multiple extractors? How do we select the optimal extractor given amount of data, available time, types of extractions desired?
Multi-document summarization (MDS) systems have been designed for short, unstructured summaries of 10-15 documents, and are inadequate for larger document collections. We propose a new approach to scaling up summarization called hierarchical summarization, and present the first implemented system, SUMMA.SUMMA produces a hierarchy of relatively short summaries, in which the top level provides a general overview and users can navigate the hierarchy to drill down for more details on topics of interest. SUMMA optimizes for coherence as well as coverage of salient information. In an Amazon Mechanical Turk evaluation, users prefered SUMMA ten times as often as flat MDS and three times as often as timelines.
Given a classification task, what is the best way to teach the resulting boundary to a human? While machine learning techniques can provide excellent methods for finding the boundary, including the selection of examples in an online setting, they tell us little about how we would teach a human the same task. We propose to investigate the problem of example selection and presentation in the context of teaching humans, and explore a variety of mechanisms in the interests of finding what may work best. In particular, we begin with the baseline of random presentation and then examine combinations of several mechanisms: the indication of an example’s relative difficulty, the use of the shaping heuristic from the cognitive science literature (moving from easier examples to harder ones), and a novel kernel-based “coverage model” of the subject’s mastery of the task. From our experiments on 54 human subjects learning and performing a pair of synthetic classification tasks via our teaching system, we found that we can achieve the greatest gains with a combination of shaping and the coverage model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.