In the modern world, information security and communications concerns are growing due to increasing attacks and abnormalities. The presence of attacks and intrusion in the network may affect various fields such as social welfare, economic issues and data storage. Thus intrusion detection (ID) is a broad research area, and various methods have emerged over the years. Hence, detecting and classifying new attacks from several attacks are complicated tasks in the network. This review categorizes the security threats and challenges in the network by accessing present ID techniques. The major objective of this study is to review conventional tools and datasets for implementing network intrusion detection systems (NIDS) with open source malware scanning software. Furthermore, it examines and compares state-of-art NIDS approaches in regard to construction, deployment, detection, attack and validation parameters. This review deals with machine learning (ML) based and deep learning (DL) based NIDS techniques and then deliberates future research on unknown and known attacks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.