Key points Cholinergic projections from the pedunculopontine tegmental nucleus (PPTg) to the retrotrapezoid nucleus (RTN) are considered to be important for sleep–wake state‐dependent control of breathing. The RTN also receives cholinergic input from the postinspiratory complex. Stimulation of the PPTg increases respiratory output under control conditions but not when muscarinic receptors in the RTN are blocked. The data obtained in the present study support the possibility that arousal‐dependent modulation of breathing involves recruitment of cholinergic projections from the PPTg to the RTN. Abstract The pedunculopontine tegmental nucleus (PPTg) in the mesopontine region has important physiological functions, including breathing control. The PPTg contains a variety of cell types, including cholinergic neurons that project to the rostral aspect of the ventrolateral medulla. In addition, cholinergic signalling in the retrotrapezoid nucleus (RTN), a region that contains neurons that regulate breathing in response to changes in CO2/H+, has been shown to activate chemosensitive neurons and increase inspiratory activity. The present study aimed to identify the source of cholinergic input to the RTN and determine whether cholinergic signalling in this region influences baseline breathing or the ventilatory response to CO2 in conscious male Wistar rats. Retrograde tracer Fluoro‐Gold injected into the RTN labelled a subset of cholinergic PPTg neurons that presumably project directly to the chemosensitive region of the RTN. In unrestrained awake rats, unilateral injection of the glutamate (10 mm/100 nL) in the PPTg decreased tidal volume (VT) but otherwise increased respiratory rate (fR) and net respiratory output as indicated by an increase in ventilation (VE). All respiratory responses elicited by PPTg stimulation were blunted by prior injection of methyl‐atropine (5 mm/50–75 nL) into the RTN. These results show that stimulation of the PPTg can increase respiratory activity in part by cholinergic activation of chemosensitive elements of the RTN. Based on previous evidence that cholinergic PPTg projections may simultaneously activate expiratory output from the pFRG, we speculate that cholinergic signalling at the level of RTN region could also be involved in breathing regulation.
Breathing is regulated by a host of arousal and sleep-wake state-dependent neuromodulators in order to maintain respiratory homeostasis. Modulators such as acetylcholine, norepinephrine, histamine, serotonin (5-HT), adenosine triphosphate (ATP), substance P, somatostatin, bombesin, orexin, and leptin can serve complementary or off-setting functions depending on the target cell type and signalling mechanisms engaged. Abnormalities in any of these modulatory mechanisms can destabilize breathing, suggesting modulatory mechanisms are not overly redundant but rather work in concert to maintain stable respiratory output. The present review focuses on the modulation of a specific cluster of neurons located in the ventral medullary surface, named retrotrapezoid nucleus, that is activated by changes in tissue CO2/H+ and regulates several aspects of breathing, including inspiration and active expiration.
Scope: Glucose homeostasis and progression of nonalcoholic fatty liver disease (NAFLD) and hepatomegaly in severe lipoatrophic mice and their modulation by intake of a diet rich in omega 3 (n-3) fatty acids (HFO) are evaluated. Methods and results: Severe lipoatrophic mice induced by PPAR-deletion exclusively in adipocytes (A-PPAR KO) and littermate controls (A-PPAR WT)are evaluated for glucose homeostasis and liver mass, proteomics, lipidomics, inflammation, and fibrosis. Lipoatrophic mice are heavier than controls, severely glucose intolerant, and hyperinsulinemic, and develop NAFLD characterized by increased liver glycogen, triacylglycerol, and diacylglycerol contents, mitotic index, apoptosis, inflammation, steatosis score, fibrosis, and fatty acid synthase (FAS) content and activity. Lipoatrophic mice also display liver enrichment with monounsaturated in detriment of polyunsaturated fatty acids including n-3 fatty acids, and increased content of cardiolipin, a tetracyl phospholipid exclusively found at the mitochondria inner membrane. Administration of a high-fat diet rich in n-3 fatty acids (HFO) to lipoatrophic mice enriches liver with n-3 fatty acids, reduces hepatic steatosis, FAS content and activity, apoptosis, inflammation, and improves glucose homeostasis. Conclusion: Diet enrichment with n-3 fatty acids improves glucose homeostasis and reduces liver steatosis and inflammation without affecting hepatomegaly in severe lipoatrophic mice.
Although CGRP neurons in the external lateral parabrachial nucleus (PBelCGRP neurons) are critical for cortical arousal in response to hypercapnia, activating them has little effect on respiration. However, deletion of all Vglut2 expressing neurons in the PBel region suppresses both the respiratory and arousal response to high CO2. We identified a second population of non-CGRP neurons adjacent to the PBelCGRP group in the central lateral, lateral crescent and Kölliker-Fuse parabrachial subnuclei that are also activated by CO2 and project to the motor and premotor neurons that innvervate respiratory sites in the medulla and spinal cord. We hypothesize that these neurons may in part mediate the respiratory response to CO2 and that they may express the transcription factor, Fork head Box protein 2 (FoxP2), which has recently been found in this region. To test this, we examined the role of the PBFoxP2 neurons in respiration and arousal response to CO2, and found that they show cFos expression in response to CO2 exposure as well as increased intracellular calcium activity during spontaneous sleep-wake and exposure to CO2. We also found that optogenetically photo-activating PBFoxP2 neurons increases respiration and that photo-inhibition using archaerhodopsin T (ArchT) reduced the respiratory response to CO2 stimulation without preventing awakening. Our results indicate that PBFoxP2 neurons play an important role in the respiratory response to CO2 exposure during NREM sleep, and indicate that other pathways that also contribute to the response cannot compensate for the loss of the PBFoxP2 neurons. Our findings suggest that augmentation of the PBFoxP2 response to CO2 in patients with sleep apnea in combination with inhibition of the PBelCGRP neurons may avoid hypoventilation and minimize EEG arousals.
Opioids provide analgesia, as well as modulate sleep and respiration, all by possibly acting on the μ-opioid receptors (MOR). MOR’s are ubiquitously present throughout the brain, posing a challenge for understanding the precise anatomical substrates that mediate opioid induced respiratory depression (OIRD) that ultimately kills most users. Sleep is a major modulator not only of pain perception, but also for changing the efficacy of opioids as analgesics. Therefore, sleep disturbances are major risk factors for developing opioid overuse, withdrawal, poor treatment response for pain, and addiction relapse. Despite challenges to resolve the neural substrates of respiratory malfunctions during opioid overdose, two main areas, the pre-Bötzinger complex (preBötC) in the medulla and the parabrachial (PB) complex have been implicated in regulating respiratory depression. More recent studies suggest that it is mediation by the PB that causes OIRD. The PB also act as a major node in the upper brain stem that not only receives input from the chemosensory areas in medulla, but also receives nociceptive information from spinal cord. We have previously shown that the PB neurons play an important role in mediating arousal from sleep in response to hypercapnia by its projections to the forebrain arousal centers, and it may also act as a major relay for the pain stimuli. However, due to heterogeneity of cells in the PB, their precise roles in regulating, sleep, analgesia, and respiratory depression, needs addressing. This review sheds light on interactions between sleep and pain, along with dissecting the elements that adversely affects respiration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.