Common crossing rails are subjected to a rapid deterioration of the rolling surface due to a dynamic loading of trains. The present study is devoted to an experimental study of the displacement and rail strain measurements in the common crossing. The experimental measurements were carried out for two stiff common crossings under the dynamic loading of high-speed train for the velocity range of 54-254 km/h. The results showed 2.5 times increase of the maximal displacements within the velocity range. The absence of the difference in the displacements between the trailing and the facing travel direction is explained with the relative displacement measurements between the rail and the sleeper and the different dynamic impact loading for the wing rail. The proposed model-based analysis of the absolute measurement of rail strain enables us to estimate the dynamic factor under the impact loading. The wing rail for trailing direction is almost twice as highly loaded as the frog rail for the facing direction. The maximal dynamic factor for the trailing direction shows almost no change for the velocities of more than 200 km/h.
The deformation modulus and permissible stress are two independent parameters that depict the carrying capacity of foundations, including earthworks and ballast layer. Nevertheless, while designing the track superstructure or controlling its state, they are considered separate to each other, even though they are terms of the same measure. The scientific problem is due to the practical necessity of unified building rules and standards. The carrying capacity of earthworks and foundations is regulated with standards based both on deformation and on stress criteria, which are not related to each other. This plays particularly important role for railway ballast layer, as an intermediate between the solids and soil. The objective of the present research is to estimate the relationship between deformation modulus and the strength of ballast layer. An overview of modern approaches according to the relation between the stiffness, deformation modulus, elasticity and strength of soils and crushed stone is done. The strength of ballast layer is considered depending on the experimental test: the direct shear test, compressive strength in the uniaxial or biaxial stress state. Load transfer model in crushed stone is proposed. The load transfer angle and cone of loading distribution are determined based on the load transfer and compressive strength models. The relation between deformation modulus and strength is derived from two simple laboratory experiments with cohesionless ballast material. The experiment tests have shown that the ballast stiffness as well as its strength are influenced with the support stress. The measurement of elastic and residual settlements for the different support stress values enables to determine the relation. It can be potentially used for the development of methods for the ballast compaction control, unification of construction norms. The research result should be considered as an approach for unification of two different ways to reflect the carrying capacity of ballast layer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.