In this study we used the Forum of European Geological Surveys geochemical baseline data to examine the distribution of cadmium (Cd) in Europe, with a particular reference to the international soil and water guideline values. The highest cadmium levels were found to occur in topsoil and to follow closely the distribution of P(2)O(5), suggesting that the contamination was from the use of rock phosphate fertilizer in intensive arable agriculture. In terms of human health impacts, food (up to several hundred microg/day) was found as the only major route of exposure to Cd for the non-smoking general population. It appeared that low levels of chronic exposure to Cd resulted in completely different human health impacts than those high levels that had caused the 'itai-itai' disease. Some correlations were suggested between cadmium levels and the age-adjusted prostate or breast cancer rates distributed in the European countries under study.
The risk associated with the inhalation of platinum group element (PGE) emissions from vehicle exhaust catalysts (VECs) has been investigated by extracting road dust and milled auto catalyst with simulated lung fluids. Gamble's solution (representative of the interstitial fluid of the deep lung) and artificial lysosomal fluid (ALF) (representative of the more acidic environment within the lung) were employed as extraction fluids. The highest PGE release was observed in ALF, implying that inhaled particles would have to be phagocytized before significant amounts of PGEs dissolve. The greatest percentage (up to 88%) of PGEs was released from road dust, possibly due to the presence of mobile PGE species formed in the roadside environment. Pt showed the highest absolute bioavailability, due to its greater concentration in the environmental samples. Pd and Rh had higher percentage of release, however, because of their more soluble nature. From the toxicological perspective, the results demonstrate potential health risks due to the likely formation of PGE-chloride complexes in the respiratory tract, such species having well-known toxic and allergenic effects on human beings and living organisms.
Platinum (Pt), palladium (Pd) and rhodium (Rh) are emitted by vehicle exhaust catalysts (VECs) and their concentrations have increased significantly in various environmental compartments, including airborne particulate matter, soil, roadside dust, vegetation, rivers and oceanic environments, over the last two decades as the use of VECs has increased. However, data on the chemical speciation of the platinum-group elements (PGEs) and their bioavailabilities are limited. In this paper, the thermodynamic computer model, HSC, has been used to predict the interactions of Pt, Pd and Rh with different inorganic ligands and to estimate the thermodynamic stability of these species in the environment. Eh-pH diagrams for the PGEs in aqueous systems under ambient conditions (25 C and 1 bar) in the presence of Cl, N and S species have been prepared. The results indicate that Pt, Pd and Rh can form complexes with all of the inorganic ions studied, suggesting that they are capable of mobilizing the PGEs as aqueous complexes that can be transported easily in environmental and biological systems and that are able to enter the food chain. Hydroxide species can contribute to the transport of PGEs in oxidizing environments such as road-runoff waters, freshwater, seawater and soil solutions, whereas bisulphide complexes could transport Pt and Pd in reducing environments. Ammonia species appear to be significant under near-neutral to basic oxidizing conditions. Chloride species are likely to be important under oxidizing, acidic and saline environments such as seawater and road-runoff waters in snowmelt conditions. Mixed ammonia-chloride species may also contribute to the transport of Pt and Pd in highly saline solutions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.