Ecology and morphology are different, and yet in comparative studies of fossil vertebrates the two are often conflated. The macroevolution of Mesozoic marine tetrapods has been explored in terms of morphological disparity, but less commonly using ecological‐functional categories. Here we use ecospace modelling to quantify ecological disparity across all Mesozoic marine tetrapods. We document the explosive radiation of marine tetrapod groups in the Triassic and their rapid attainment of high ecological disparity. Late Triassic extinctions led to a marked decline in ecological disparity, and the recovery of ecospace and ecological disparity was sluggish in the Early Jurassic. High levels of ecological disparity were again achieved by the Late Jurassic and maintained during the Cretaceous, when the ecospace became saturated by the Late Cretaceous. Sauropterygians, turtles and ichthyosauromorphs were the largest contributors to ecological disparity. Throughout the Mesozoic, we find that established groups remained ecologically conservative and did not explore occupied or vacant niches. Several parts of the ecospace remained vacant for long spans of time. Newly evolved, radiating taxa almost exclusively explored unoccupied ecospace, suggesting that abiotic releases are needed to empty niches and initiate diversification. In the balance of evolutionary drivers in Mesozoic marine tetrapods, abiotic factors were key to initiating diversification events, but biotic factors dominated the subsequent generation of ecological diversity.
The fossil record of non-biomineralizing, softbodied taxa is our only direct evidence of the early history of vertebrates. A robust reconstruction of the affinities of these taxa is critical to unlocking vertebrate origins and understanding the evolution of skeletal tissues, but these taxa invariably have unstable and poorly supported phylogenetic positions. At the cusp between mineralized bony vertebrates and entirely soft-bodied vertebrates is the enigmatic Lasanius, a purported anaspid from the Silurian of Scotland. Interpretations of its affinity and significance are conflicted, principally because of its poorly understood anatomy due to taphonomic distortion and loss of soft-tissues. Here we use an array of modern techniques to reassess the anatomy of Lasanius via a comprehensive study of 229 complete and partial specimens. A new reconstruction clarifies the identity and position of preserved features, including paired sensory organs, a notochord, and digestive tract, supporting the vertebrate affinities of this genus. SEM-EDS trace element mapping suggests a bone-like composition of mineralized parts, but finds no evidence for mineralized dermal armour. Phylogenetic analysis recovers Lasanius as an early stem-cyclostome, and subsequent analysis supports the rejection of alternative placements (such as stemgnathostome). We highlight that while distinguishing between the early cyclostome and gnathostome condition is problematic, increasing confidence in the anatomy of key taxa, such as Lasanius, is vital for increased stability throughout the early vertebrate tree.
Exceptionally preserved fossils of soft-bodied organisms provide unique evidence of evolutionary history, but they are often contentious; different approaches frequently produce radically different reconstructions of taxa and their affinities. Conflict arises due to difficulties in disentangling the three non-independent factors that underlie all morphological variation within and between fossils: ontogeny, taphonomy and phylogeny. Comparative data from extant organisms can be extremely powerful in this context, but is often difficult to apply given the multi-dimensionality of anatomical variation. Here, we present a multivariate ordination method using discrete morphological character data from modern taxa at different ontogenetic and taphonomic stages (semaphoront and ‘semataphonts’). Analysing multiple axes of morphological variation simultaneously allows us to visualize character combinations that are likely to exist in fossil specimens at intersecting stages of growth and decay, and thus constrain interpretation of fossils. Application to early vertebrates finds variation in fossil specimens to be accounted for by all three axes: primarily decay in Mayomyzon , ontogeny in Priscomyzon and phylogeny in ‘euphaneropoids’ and Palaeospondylus . Our demonstration of empirical multi-factorial variation underscores the power of multivariate approaches to fossil interpretation, especially non-biomineralized taxa. As such, this conceptual approach provides a new method for resolving enigmatic taxa throughout the fossil record.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.