Background: Monocytes and macrophages express an extensive repertoire of G Protein-Coupled Receptors (GPCRs) that regulate inflammation and immunity. In this study we performed a systematic micro-array analysis of GPCR expression in primary mouse macrophages to identify family members that are either enriched in macrophages compared to a panel of other cell types, or are regulated by an inflammatory stimulus, the bacterial product lipopolysaccharide (LPS).
G-protein-coupled receptors (GPCRs) are widely targeted in drug discovery. As macrophages are key cellular mediators of acute and chronic inflammation, we review here the role of GPCRs in regulating macrophage function, with a focus on contribution to disease pathology and potential therapeutic applications. Within this analysis, we highlight novel GPCRs with a macrophage-restricted expression profile, which provide avenues for further exploration. We also review an emerging literature, which documents novel roles for GPCR signaling components in GPCR-independent signaling in macrophages. In particular, we examine the crosstalk between GPCR and TLR signaling pathways and highlight GPCR signaling molecules which are likely to have uncharacterized functions in this cell lineage.
BackgroundThe ten mouse and six human members of the Schlafen (Slfn) gene family all contain an AAA domain. Little is known of their function, but previous studies suggest roles in immune cell development. In this report, we assessed Slfn regulation and function in macrophages, which are key cellular regulators of innate immunity.Methodology/Principal FindingsMultiple members of the Slfn family were up-regulated in mouse bone marrow-derived macrophages (BMM) by the Toll-like Receptor (TLR)4 agonist lipopolysaccharide (LPS), the TLR3 agonist Poly(I∶C), and in disease-affected joints in the collagen-induced model of rheumatoid arthritis. Of these, the most inducible was Slfn4. TLR agonists that signal exclusively through the MyD88 adaptor protein had more modest effects on Slfn4 mRNA levels, thus implicating MyD88-independent signalling and autocrine interferon (IFN)-β in inducible expression. This was supported by the substantial reduction in basal and LPS-induced Slfn4 mRNA expression in IFNAR-1−/− BMM. LPS causes growth arrest in macrophages, and other Slfn family genes have been implicated in growth control. Slfn4 mRNA levels were repressed during macrophage colony-stimulating factor (CSF-1)-mediated differentiation of bone marrow progenitors into BMM. To determine the role of Slfn4 in vivo, we over-expressed the gene specifically in macrophages in mice using a csf1r promoter-driven binary expression system. Transgenic over-expression of Slfn4 in myeloid cells did not alter macrophage colony formation or proliferation in vitro. Monocyte numbers, as well as inflammatory macrophages recruited to the peritoneal cavity, were reduced in transgenic mice that specifically over-expressed Slfn4, while macrophage numbers and hematopoietic activity were increased in the livers and spleens.Conclusions
Slfn4 mRNA levels were up-regulated during macrophage activation but down-regulated during differentiation. Constitutive Slfn4 expression in the myeloid lineage in vivo perturbs myelopoiesis. We hypothesise that the down-regulation of Slfn4 gene expression during macrophage differentiation is a necessary step in development of this lineage.
Classical STAT1 activation in response to TLR agonists occurs by phosphorylation of the Y701 and S727 residues through autocrine type I IFN signaling and p38 MAPK signaling, respectively. In this study, we report that the TLR9 agonist CpG DNA induced Ifn-β mRNA, as well as downstream type I IFN-dependent genes, in a MyD88-dependent manner in mouse myeloid dendritic cells. This pathway was required for maximal TNF and IL-6 secretion, as well as expression of cell surface costimulatory molecules. By contrast, neither A- nor B-type CpG-containing oligonucleotides induced Ifn-β in mouse bone marrow-derived macrophages (BMM) and a CpG-B oligonucleotide did not induce IFn-β in the macrophage-like cell line, J774. In BMM, STAT1 was alternatively activated (phosphorylated on S727, but not Y701), and was retained in the cytoplasm in response to CpG DNA. CpG DNA responses were altered in BMM from STAT1S727A mice; Il-12p40 and Cox-2 mRNAs were more highly induced, whereas Tlr4 and Tlr9 mRNAs were more repressed. The data suggest a novel inhibitory function for cytoplasmic STAT1 in response to TLR agonists that activate p38 MAPK but do not elicit type I IFN production. Indeed, the TLR7 agonist, R837, failed to induce Ifn-β mRNA and consequently triggered STAT1 phosphorylation on S727, but not Y701, in human monocyte-derived macrophages. The differential activation of Ifn-β and STAT1 by CpG DNA in mouse macrophages vs dendritic cells provides a likely mechanism for their divergent roles in priming the adaptive immune response.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.