Many disease states, including the aging process, are associated with the accumulation of mitochondria harboring respiratory dysfunction. Mitochondrial dysfunction is often accompanied by increased ROS levels that can contribute to cellular dysfunction and disease etiology. Here we use the model eukaryote S. cerevisiae to investigate whether reduced cytochrome c oxidase (COX) activity, commonly reported in aging organisms and associated with neurodegenerative disorders, leads to ROS production from mitochondria. We provide evidence that although reduced COX complex activity correlates with ROS accumulation, mitochondria are not the major production center. Instead we show that COX-deficient mitochondria activate Ras upon their outer membrane that establishes a pro-ROS accumulation environment by suppressing antioxidant defenses and the ERAD-mediated turnover of the ER-localized NADPH oxidase Yno1p. Our data suggest that dysfunctional mitochondria can serve as a signaling platform to promote the loss of redox homeostasis, ROS accumulation, and accelerate aging in yeast.
We show that actin-mediated apoptosis occurs as a result of inappropriate Ras-cAMP-PKA activity in Δwhi2 cells. Cells lacking Whi2p function exhibit an aberrant accumulation of activated Ras2 at the mitochondria in response to nutritional depletion. This study provides evidence that the shutdown of cAMP-PKA signalling activity in wild-type cells involves Whi2p-dependent targeting of Ras2p to the vacuole for proteolysis. We also demonstrate for the first time that Whi2p-dependent regulation of cAMP-PKA signalling plays a physiological role in the differentiation of yeast colonies by facilitating elaboration of distinct zones of cell death.
BackgroundAppropriate control of mitochondrial function, morphology and biogenesis are crucial determinants of the general health of eukaryotic cells. It is therefore imperative that we understand the mechanisms that co-ordinate mitochondrial function with environmental signaling systems. The regulation of yeast mitochondrial function in response to nutritional change can be modulated by PKA activity. Unregulated PKA activity can lead to the production of mitochondria that are prone to the production of ROS, and an apoptotic form of cell death.ResultsWe present evidence that mitochondria are sensitive to the level of cAMP/PKA signaling and can respond by modulating levels of respiratory activity or committing to self execution. The inappropriate activation of one of the yeast PKA catalytic subunits, Tpk3p, is sufficient to commit cells to an apoptotic death through transcriptional changes that promote the production of dysfunctional, ROS producing mitochondria. Our data implies that cAMP/PKA regulation of mitochondrial function that promotes apoptosis engages the function of multiple transcription factors, including HAP4, SOK2 and SCO1.ConclusionsWe propose that in yeast, as is the case in mammalian cells, mitochondrial function and biogenesis are controlled in response to environmental change by the concerted regulation of multiple transcription factors. The visualization of cAMP/TPK3 induced cell death within yeast colonies supports a model that PKA regulation plays a physiological role in coordinating respiratory function and cell death with nutritional status in budding yeast.
Saturation of the cell's protein folding capacity and accumulation of inactive incompletely folded protein often accompanying the overexpression of membrane proteins (MPs) presents an obstacle to their e⁄cient puri¢cation in a functional form for structural studies. We present a novel strategy for optimization of functional MP expression in Saccharomyces cerevisiae. This approach exploits the unfolded protein response (UPR) pathway, a stress signaling mechanism that senses the accumulation of unfolded proteins in the endoplasmic reticulum. We demonstrate that a high level of UPR induction upon expression of a MP re£ects impaired functional expression of that protein. Tuning the expression level of the protein so as to avoid or minimize UPR induction results in its increased functional expression. UPR status can therefore serve as a proxy variable for the extent of impaired expression of a MP that may even be applicable in the absence of knowledge of the protein's biological function. ß
Actin represents one of the most abundant and extensively studied proteins found in eukaryotic cells. It has been identified as a major target for destruction during the process of apoptosis. Recent research has also highlighted a role for cytoskeletal components in the initiation and inhibition of apoptotic processes. The high degree of conservation that exists between actins from divergent eukaryotes, particularly with respect to those that contribute to the cytoskeleton, has meant that functional studies from the model yeast Saccharomyces cerevisiae have proven useful in elucidating its cellular roles. Within the context of apoptosis in yeasts, actin seems to function as part of the signalling mechanisms that link nutritional sensing to a mitochondrialdependent commitment to cell death. Studies in yeasts have also shown that oxidative damage accrued by the actin cytoskeleton is closely monitored and is tethered to an apoptotic response. Strong, but as yet, undefined links between the actin cytoskeleton and apoptosis have also been described in studies from plant and animal systems. The widespread involvement of actin in apoptotic mechanisms from diverse eukaryotic organisms raises the possibility of conserved regulatory pathways, further strengthening the relevance of yeast research in this area.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.