A pair of hydrographic sections, one north and one south of Cape Blanco at 42.9N, was sampled in five summers (1998 -2000 and 2002-2003). The NH line at 44.6N lies about 130 km south of the Columbia River, and spans a relatively wide shelf off Newport, Oregon. The CR line at 41.9N off Crescent City, California, lies 300 km farther south and spans a narrower shelf. Summer winds are predominantly southward in both locations but the southward winds are stronger on the CR line. Sampling included CTD/rosette casts (to measure temperature, salinity, dissolved oxygen, nutrients, chlorophyll), zooplankton net tows and continuous operation of an Acoustic Doppler Current Profiler. We summarize and compare July-August observations from the two locations. We find significant summer-season differences in the coastal upwelling domains north and south of Cape Blanco. Compared to the domain off Newport, the domain off Crescent City has a more saline, cooler, denser and thicker surface mixed layer, a wider coastal zone inshore of the upwelling front and jet, higher nutrient concentrations in the photic zone and higher phytoplankton biomass. The southward coastal jet lies near the coast (about 20 -30 km offshore, over the shelf) on the NH line, but far from shore (about 120 km) on the CR line; a weak secondary jet lies near the shelf-break (35 km from shore) off Crescent City. Phytoplankton tend to be light-limited on the CR line and nutrientlimited on the NH line. Copepod biomass is high (15 mg C m Ϫ3 ) inshore of the mid-shelf on both NH and CR lines, and is also high in the core of the coastal jet off Crescent City. The CR line shows evidence of deep chlorophyll pockets that have been subducted from the surface layer. We attribute these significant differences to stronger mean southward wind stress over the southern domain, to strong small-scale wind stress curl in the lee of Cape Blanco, and to the reduced influence of the Columbia River discharge in this region.
Observed changes in the nutrient levels in the halocline of the California Current during 2002 indicated a natural eutrophication that was accompanied by increased chlorophyll and oxygen in surface water. Decreased oxygen in the lower water column over the shelf indicated that much of the phytoplankton production was respired rather than passed on to higher trophic levels. In 2002 the halocline water was >1°C colder than usual and 0.5°C colder than any previous observation. Four transect lines off the coast of Oregon show a 50% increase in nitrate, phosphate and silicate at 33 psu in 2002 compared to 1998–2001. The increase in nutrients resulted in a 2‐fold increase in chlorophyll standing stocks during the summer of 2002 compared with the preceding four years. A significant portion of the increased production was subsequently respired resulting in low oxygen water over the shelf.
In summer 1988, we made repeated mesoscale surveys of a grid extending 200 km offshore between 37°N and 39°N in the coastal transition zone off northern California, obtaining continuous acoustic Doppler current profiler data and conductivity‐temperature‐depth data at standard stations 25 km apart on alongshore sections 40 km apart. All surveys showed a baroclinic equatorward jet, with core velocities of >50 cm s−1 at the surface decreasing to about 10 cm s−1 at 200 m, a width of 50–75 km, and a baroclinic transport of about 4 Sv. The core of the jet lay between the 8.6 and 9.4 m2 s−2 contours of geopotential anomaly (relative to 500 dbar). Three current meter moorings, deployed at 25‐km separation across the jet at the beginning of the survey sequence, provided time‐series of the velocity; throughout the 37‐day deployment, at least one mooring was within the core defined by the 8.6 and 9.4 m2 s−2 contours. The jet flowed southwestward across the grid from late June until mid‐July 1988, when the jet axis moved offshore in the north and onshore in the southern portion of the grid. Temperature‐salinity analysis shows that jet waters can be distinguished from both the freshly upwelled coastal waters and the offshore waters. Isopycnal maps indicate alongshore advection of relatively fresh, cool water from farther north, as well as small‐scale patchiness not resolved by our survey grid. The baroclinic jet observed here may be continuous with the core of the California Current off central California. The later surveys clearly showed a poleward‐flowing undercurrent adjacent to the continental slope, with core velocities up to 20 cm s−1 at depths of 150–250 m. Its baroclinic transport (relative to 500 dbar) increased from <0.5 Sv to >1.0 Sv between late June and early August 1988. Within the survey grid, there was a definite onshore gradient in the characteristics of North Pacific Intermediate Water. The subsurface waters adjacent to the continental margin were warmer and more saline than those offshore, indicating net northward advection by the California Undercurrent over the inshore 100 km and equatorward advection farther from shore.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations –citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.