The recently published EAT-Lancet Commission report on dietary impacts on the environment suggested that their proposed diet could prevent more than 10 million annual premature mortalities from noncommunicable diseases globally. The report did not meet standards for transparency and replicability, nor did it fully account for statistical uncertainty. Our attempt to replicate the mortality calculations for the United States revealed flaws in the assumptions and methods used to estimate the avoided mortalities. After correcting some calculation errors and fully accounting for uncertainty in the avoided mortalities, the mortality reduction effect of the EAT-Lancet proposed diet in the USA is no greater than the impact of energy consumption changes that would prevent under-weight, over-weight, and obesity alone. As our findings call into question the global conclusions of the EAT-Lancet report, futher independent validation is needed before it can be used to inform dietary guidelines.
Random effect meta-regressions were constructed to estimate concentrations of two heterocyclic amines (HCA) and eight polycyclic aromatic hydrocarbons (PAH) in meat and breads. Eighteen HCA studies and nine PAH studies of food concentration were assembled. Concentration was computed for beef, poultry, pork, and seafood, and bread. Fixed effect predictors included cooking time, form of the food, cooking method, interaction between form and cooking method, temperature at which the food was cooked, fuel of the flame source, percentage of fat, and other elements. Meat type was significant to all HCAs but only three of the PAHs. Cooking method or an interaction between cooking method and food form was significant in all the overall models for each compound, and 80% of models created for stratifications of the data based on meat type. Improvement on compilations such as the Computerized Heterocyclic Amines Resource for Research in Epidemiology of Disease (CHARRED) database comes from inclusion of additional studies, PAH compounds, more generalizable food categories, more cooking methods (such as smoking), and addition of seafood. Meta-regression allows parameters to be estimated with separation of between-study heterogeneity, and extrapolation of exposures to more foods. Resulting uncertainty estimates are useful in a probabilistic exposure assessment.
As African swine fever (ASF) continues to expand geographically, supplementary control strategies are needed to reduce disease risk and impact in affected areas. Full depopulation is central to current ASF control efforts, and its efficacy depends on surveillance and timely disease reporting, while resulting in large losses regardless of the producers' efforts to promptly detect, report, and contain the disease. This disconnect between prompt detection and reporting, and subsequent farm losses, can deter producers to invest in ASF detection and control. Alternative approaches are needed to incentivize individual producers to invest in early detection and reporting. We postulate that commercial swine farms may be effectively partitioned in separate units, or subpopulations, to which biosecurity, surveillance and control can be applied. The suggested Partitioning framework relies on three main components: 1. external and internal biosecurity to reduce the risk of ASF introduction and maintain separate subpopulations; 2. cost-effective on-farm ASF surveillance to enhance early detection; 3. response plans at the unit level, including culling of affected subpopulations, and demonstration of freedom from disease on the remaining ones. With such Partitioning approach, individual producers may reduce ASF risk on a farm and in the region, while also reducing ASF outbreak losses via targeted depopulation of affected units. It requires relevant legislation to incorporate the notion of within-farm subpopulations and provide a regulatory framework for targeted depopulation and substantiation of disease freedom. Its design should be tailored to fit individual farms. Partitioning can be an effective public-private partnership approach for ASF risk reduction. It should be driven by industry, as its benefits are accrued mainly by individual producers, but regulatory oversight is key to ensure proper implementation and avoid further disease spread. Partitioning's value is greatest for producers in ASF-affected regions, but ASF-free areas could also benefit from it for preparedness and early detection. It could also be adapted to other transboundary animal diseases and can be implemented as a stand-alone program or in conjunction with other efforts such as zoning and compartmentalization. Partitioning would contribute to the improved resilience and sustainability of the global pork industry and will benefit consumers and society through improved food security and animal welfare.
This probabilistic analysis estimated daily dietary exposures of the US population to heterocyclic amines and polycyclic aromatic hydrocarbons from meat and some varieties of bread. Mean concentrations for these foods grouped by cooking method and food form were combined with consumption data from the National Health and Nutritional Examination Survey (NHANES). Mean exposure to HCA2 (PhIP + MeIQx), was 565.3 ng/day (95% CrI: 403.73, 726.88), and to PAH8 (sum of BaP, ChY, BaA, BkF, BbF, DahA, IP, and BghiP), was 634.8 ng/day (568.38, 701.15). HCA2 exposures were not significantly different between meat types, but multiple differences were found between cooking types. Exposures to PAH8 in the mean consumers differed significantly between cooking methods, and were higher for beef than poultry (mean difference: 983 ng, 95%CrI: -77.0, 4076.0) and pork (990 ng, 95%CrI: 23.7, 4061.8), but not for any other food comparisons. Tradeoffs between exposures associated with a typical portion size of potential food replacements were also examined. Differences in HCA2 and PAH8 exposure are primarily driven by the preparation method rather than the type of meat. These findings should be considered in future studies linking PAH and HCA compounds with human health impacts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.