This article focuses on the relevance judgments made by health information users who use the Web. Health information users were conceptualized as motivated information users concerned about how an environmental issue affects their health. Users identified their own environmental health interests and conducted a Web search of a particular environmental health Web site. Users were asked to identify (by highlighting with a mouse) the criteria they use to assess relevance in both Web search engine surrogates and full-text Web documents. Content analysis of document criteria highlighted by users identified the criteria these users relied on most often. Key criteria identified included (in order of frequency of appearance) research, topic, scope, data, influence, affiliation, Web characteristics, and authority/ person. A power-law distribution of criteria was observed (a few criteria represented most of the highlighted regions, with a long tail of occasionally used criteria). Implications of this work are that information retrieval (IR) systems should be tailored in terms of users' tendencies to rely on certain document criteria, and that relevance research should combine methods to gather richer, contextualized data. Metadata for IR systems, such as that used in search engine surrogates, could be improved by taking into account actual usage of relevance criteria. Such metadata should be user-centered (based on data from users, as in this study) and contextappropriate (fit to users' situations and tasks).
The proliferation of discipline-specific metadata schemes contributes to artificial barriers that can impede interdisciplinary and transdisciplinary research. The authors considered this problem by examining the domains, objectives, and architectures of nine metadata schemes used to document scientific data in the physical, life, and social sciences. They used a mixed-methods content analysis and Greenberg's (2005) metadata objectives, principles, domains, and architectural layout (MODAL) framework, and derived 22 metadata-related goals from textual content describing each metadata scheme. Relationships are identified between the domains (e.g., scientific discipline and type of data) and the categories of scheme objectives. For each strong correlation (>0.6), a Fisher's exact test for nonparametric data was used to determine significance (p < .05).Significant relationships were found between the domains and objectives of the schemes. Schemes describing observational data are more likely to have "scheme harmonization" (compatibility and interoperability with related schemes) as an objective; schemes with the objective "abstraction" (a conceptual model exists separate from the technical implementation) also have the objective "sufficiency" (the scheme defines a minimal amount of information to meet the needs of the community); and schemes with the objective "data publication" do not have the objective "element refinement." The analysis indicates that many metadata-driven goals expressed by communities are independent of scientific discipline or the type of data, although they are constrained by historical community practices and workflows as well as the technological environment at the time of scheme creation. The analysis reveals 11 fundamental metadata goals for metadata documenting scientific data in support of sharing research data across disciplines and domains. The authors report these results and highlight the need for more metadata-related research, particularly in the context of recent funding agency policy changes.
Digital data repositories ought to support immediate operational needs and long-term project goals. This paper presents the Dryad repository's metadata best practice balancing of these two needs. The paper reviews background work exploring the meaning of science, characterizing data, and highlighting data curation metadata challenges. The Dryad repository is introduced, and the initiative's metadata best practice and underlying rationales are described. Dryad's metadata approach includes two prongs: one addressing the long-term goal to align with the Semantic Web via a metadata application profile; and another addressing the immediate need to make content available in DSpace via an extensible markup language (XML) schema. The conclusion summarizes limitations and advantages of the two prongs underlying Dryad's metadata effort.
Information Retrieval (IR) approaches for semantic web search engines have become very populars in the last years. Popularization of different IR libraries, like Lucene, that allows IR implementations almost out-of-the-box have make easier IR integration in Semantic Web search engines. However, one of the most important features of Semantic Web documents is the structure, since this structure allow us to represent semantic in a machine readable format. In this paper we analyze the specific problems of structured IR and how to adapt weighting schemas for semantic document retrieval.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.