Biliary atresia is a rare disease of infancy, which has changed within 30 years from being fatal to being a disorder for which effective palliative surgery or curative liver transplantation, or both, are available. Good outcomes for infants depend on early referral and timely Kasai portoenterostomy, and thus a high index of suspicion is needed for investigation of infants with persistent jaundice. In centres with much experience of treating this disorder, up to 60% of children will achieve biliary drainage after Kasai portoenterostomy and will have serum bilirubin within the normal range within 6 months. 80% of children who attain satisfactory biliary drainage will reach adolescence with a good quality of life without undergoing liver transplantation. Although much is known about management of biliary atresia, many aspects are poorly understood, including its pathogenesis. Several hypotheses exist, implicating genetic predisposition and dysregulation of immunity, but the cause is probably multifactorial, with obliterative extrahepatic cholangiopathy as the common endpoint. Researchers are focused on identification of relevant genetic and immune factors and understanding serum and hepatic factors that drive liver fibrosis after Kasai portoenterostomy. These factors might become therapeutic targets to halt the inevitable development of cirrhosis and need for liver transplantation.
Ciliary dysfunction leads to a broad range of overlapping phenotypes, termed collectively as ciliopathies. This grouping is underscored by genetic overlap, where causal genes can also contribute modifying alleles to clinically distinct disorders. Here we show that mutations in TTC21B/IFT139, encoding a retrograde intraflagellar transport (IFT) protein, cause both isolated nephronophthisis (NPHP) and syndromic Jeune Asphyxiating Thoracic Dystrophy (JATD). Moreover, although systematic medical resequencing of a large, clinically diverse ciliopathy cohort and matched controls showed a similar frequency of rare changes, in vivo and in vitro evaluations unmasked a significant enrichment of pathogenic alleles in cases, suggesting that TTC21B contributes pathogenic alleles to ∼5% of ciliopathy patients. Our data illustrate how genetic lesions can be both causally associated with diverse ciliopathies, as well as interact in trans with other disease-causing genes, and highlight how saturated resequencing followed by functional analysis of all variants informs the genetic architecture of disorders.
Jeune asphyxiating thoracic dystrophy, an autosomal recessive chondrodysplasia, often leads to death in infancy because of a severely constricted thoracic cage and respiratory insufficiency; retinal degeneration, cystic renal disease and polydactyly may be complicating features. We show that IFT80 mutations underlie a subset of Jeune asphyxiating thoracic dystrophy cases, establishing the first association of a defective intraflagellar transport (IFT) protein with human disease. Knockdown of ift80 in zebrafish resulted in cystic kidneys, and knockdown in Tetrahymena thermophila produced shortened or absent cilia.
Intraflagellar transport (IFT) depends on two evolutionarily conserved modules, subcomplexes A (IFT-A) and B (IFT-B), to drive ciliary assembly and maintenance. All six IFT-A components and their motor protein, DYNC2H1, have been linked to human skeletal ciliopathies, including asphyxiating thoracic dystrophy (ATD; also known as Jeune syndrome), Sensenbrenner syndrome, and Mainzer-Saldino syndrome (MZSDS). Conversely, the 14 subunits in the IFT-B module, with the exception of IFT80, have unknown roles in human disease. To identify additional IFT-B components defective in ciliopathies, we independently performed different mutation analyses: candidate-based sequencing of all IFT-B-encoding genes in 1,467 individuals with a nephronophthisis-related ciliopathy or whole-exome resequencing in 63 individuals with ATD. We thereby detected biallelic mutations in the IFT-B-encoding gene IFT172 in 12 families. All affected individuals displayed abnormalities of the thorax and/or long bones, as well as renal, hepatic, or retinal involvement, consistent with the diagnosis of ATD or MZSDS. Additionally, cerebellar aplasia or hypoplasia characteristic of Joubert syndrome was present in 2 out of 12 families. Fibroblasts from affected individuals showed disturbed ciliary composition, suggesting alteration of ciliary transport and signaling. Knockdown of ift172 in zebrafish recapitulated the human phenotype and demonstrated a genetic interaction between ift172 and ift80. In summary, we have identified defects in IFT172 as a cause of complex ATD and MZSDS. Our findings link the group of skeletal ciliopathies to an additional IFT-B component, IFT172, similar to what has been shown for IFT-A.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.