Abstract.In this paper, we study systems of two conservation laws with homogeneous quadratic flux functions. We use the viscous profile criterion for shock admissibility. This criterion leads to the occurrence of non-classical transitional shock waves, which are sensitively dependent on the form of the viscosity matrix. The goal of this paper is to lay a foundation for investigating how the structure of solutions of the Riemann problem is affected by the choice of viscosity matrix.Working in the framework of the fundamental wave manifold, we derive a necessary and sufficient condition on the model parameters for the presence of transitional shock waves. Using this condition, we are able to identify the regions in the wave manifold that correspond to transitional shock waves. Also, we determine the boundaries in the space of model parameters that separate models with differing numbers of transitional regions.Mathematical subject classification: 35L65, 35L67.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.