Artificial neural networks (ANNs) were developed to accurately predict the self-diffusion constants for individual components in binary fluid mixtures. The ANNs were tested on an experimental database of 4328 self-diffusion constants from 131 mixtures containing 75 unique compounds. The presence of strong hydrogen bonding molecules may lead to clustering or dimerization resulting in non-linear diffusive behavior. To address this, self- and binary association energies were calculated for each molecule and mixture to provide information on intermolecular interaction strength and were used as input features to the ANN. An accurate, generalized ANN model was developed with an overall average absolute deviation of 4.1%. Forward input feature selection reveals the importance of critical properties and self-association energies along with other fluid properties. Additional ANNs were developed with subsets of the full input feature set to further investigate the impact of various properties on model performance. The results from two specific mixtures are discussed in additional detail: one providing an example of strong hydrogen bonding and the other an example of extreme pressure changes, with the ANN models predicting self-diffusion well in both cases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.