Summary Most forms of chemotherapy employ mechanisms involving induction of oxidative stress, a strategy that can be effective due to the elevated oxidative state commonly observed in cancer cells. However, recent studies have shown that relative redox levels in primary tumors can be heterogeneous, suggesting that regimens dependent on differential oxidative state may not be uniformly effective. To investigate this issue in hematological malignancies, we evaluated mechanisms controlling oxidative state in primary specimens derived from acute myelogenous leukemia (AML) patients. Our studies demonstrate three striking findings. First, the majority of functionally-defined leukemia stem cells (LSCs) are characterized by relatively low levels of reactive oxygen species (termed “ROS-low”). Second, ROS-low LSCs aberrantly over-express BCL-2. Third, BCL-2 inhibition reduced oxidative phosphorylation and selectively eradicated quiescent LSCs. Based on these findings, we propose a model wherein the unique physiology of ROS-low LSCs provides an opportunity for selective targeting via disruption of BCL-2-dependent oxidative phosphorylation.
Antibody responses to viral infections are sustained for decades by long-lived plasma cells (LLPCs). However, LLPCs have yet to be characterized in humans. Here we used CD19, CD38, and CD138 to identify four PC subsets in human bone marrow (BM). We found that the CD19−CD38hiCD138+ subset was morphologically distinct, differentially expressed PC-associated genes and exclusively contained PCs specific for viral antigens to which the subjects had not been exposed for over 40 years. Protein sequences of measles- and mumps-specific circulating antibodies were encoded for by CD19−CD38hiCD138+ PCs in the BM. Finally, we found that CD19−CD38hiCD138+ PCs had a distinct RNA transcriptome signature and human immunoglobulin heavy chain (VH) repertoire that was relatively uncoupled from other BM PC subsets and likely represents the B cell response’s “historical record” of antigenic exposure. Thus, our studies define human LLPCs and provide a mechanism for the life-long maintenance of anti-viral antibodies in the serum.
Bone marrow transplantation (BMT) can cure myelodysplastic syndrome (MDS), although transplantation carries significant risks of morbidity and mortality. Because the optimal timing of HLA-matched BMT for MDS is unknown, we constructed a Markov model to examine 3 transplantation strategies for newly diagnosed MDS: transplantation at diagnosis, transplantation at leukemic progression, and transplantation at an interval from diagnosis but prior to leukemic progression. Analyses using individual patient risk-assessment data from transplantation and non-
R115777 is a nonpeptidomimetic enzymespecific inhibitor of farnesyl protein transferase (FT) that was developed as a potential inhibitor of Ras protein signaling, with antitumor activity in preclinical models. This study was a phase 1 trial of orally administered R115777 in 35 adults with poor-risk acute leukemias. Cohorts of patients received R115777 at doses ranging from 100 mg twice daily (bid) to 1200 mg bid for up to 21 days. Dose-limiting toxicity occurred at 1200 mg bid, with central neurotoxicity evidenced by ataxia, confusion, and dysarthria. Non-dose-limiting toxicities included reversible nausea, renal insufficiency, polydipsia, paresthesias, and myelosuppression. R115777 inhibited FT activity at 300 mg bid and farnesylation of FT substrates lamin A and HDJ-2 at 600 mg bid. Extracellular signal-regulated kinase (ERK), an effector enzyme of Ras-mediated signaling, was detected in its phosphorylated (acti- vated IntroductionAdult acute leukemias remain formidable therapeutic challenge. Only 70% of adults with newly diagnosed acute myelogenous leukemias (AMLs) achieve complete remission (CR) after cytotoxic induction chemotherapy. Although these CRs may be prolonged in 35% to 40% of younger adults (age Ͻ 60), 1-5 the remainder have a relapse and die. Certain subgroups, including older adults, 3,5,6 patients with AMLs linked to environmental or occupational exposures (including therapy-induced AMLs), and patients with previous myelodysplasia (MDS) or other antecedent hematologic disorders, 7,8 have extremely poor outcomes, with CR rates of 40% or less, CR durations less than 12 months, and cure rates less than 10% to 15%. 3,5,6 The overall outlook for adult acute lymphoblastic leukemias (ALLs) is similar, 9-11 with a particularly poor prognosis in Philadelphia chromosome (Ph ϩ ) disease. 9,12 Thus, new approaches are needed to improve the outcome for adults with refractory leukemias.Improved understanding of signal transduction pathways has resulted in identification of a panoply of potential therapeutic targets. [13][14][15][16] Among these are the membrane-associated G proteins encoded by the ras family of proto-oncogenes. Ras proteins are activated downstream of protein tyrosine kinases (PTKs, eg, growth factor receptors) and, in turn, trigger a cascade of phosphorylation events through sequential activation of Raf, MEK-1, and ERKs (extracellular signal-related kinases). These events are critical to survival of hematopoietic cells. [16][17][18][19] The Ras proteins are synthesized as cytosolic precursors that must attach to the cell membrane to transmit signals. Membrane attachment depends on the addition of a 15-carbon farnesyl group to Ras, a reaction that is catalyzed by the enzyme farnesyltransferase (FT). [20][21][22] FT inhibitors (FTIs) were developed on the premise that FT inhibition would prevent Ras processing and, therefore, transduction of proliferative signals. [22][23][24] Subsequent studies, however, have suggested that the cytotoxic actions of FTIs might also involve other farnesylated ...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.