Fish behaviours are often considered to be sensitive endpoints of waterborne contaminants, but little attention has been given to engineered nanomaterials. The present study aimed to determine the locomotor and social behaviours of rainbow trout (Oncorhynchus mykiss) during waterborne exposure to single-walled carbon nanotubes (SWCNTs), and to ascertain the physiological basis for any observed effects. Dispersed stock suspensions of SWCNTs were prepared by stirring in sodium dodecyl sulphate (SDS), an anionic surfactant, on an equal w/w basis. Trout were exposed to control (no SWCNT or SDS), 0.25 mg L(-1) SDS (dispersant control), or 0.25 mg L(-1) of SWCNT for 10 days. Video tracking analysis of spontaneous locomotion of individual fish revealed no significant effects of SWCNT on mean velocity when active, total distance moved, or the distribution of swimming speeds. Hepatic glycogen levels were also unaffected. Fish exposed to SWCNTs retained competitive fitness when compelled to compete in energetically costly aggressive interactions with fish from both control groups. Assessment of the respiratory physiology of the fish revealed no significant changes in ventilation rate or gill injuries. Haematocrit and haemoglobin concentrations in the blood were unaffected by SWCNT exposure; and the absence of changes in the red and white pulp of the spleen excluded a compensatory haematopoietic response to protect the circulation. Despite some minor histological changes in the kidneys of fish exposed to SWCNT compared to controls, plasma ion concentrations and tissue electrolytes were largely unaffected. Direct neurotoxicity of SWCNT was unlikely with the brains showing mostly normal histology, and with no effects on acetylcholinesterase or Na(+)/K(+)-ATPase activities in whole brain homogenates. The minimal effects of waterborne exposure to SWCNT observed in this study are in contrast to our previous report of SWCNT toxicity in trout, suggesting that details of the dispersion method and co-exposure concentration of the dispersing agent may alter toxicity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.