International audienceIn the last 4 years, we have developed a partnership between dance and neuroscience to study the relationships between body space in dance and the surrounding space, and the link between movement and audition as experienced by the dancer. The opportunity to work with a dancer/choreographer, an expert in movement, gives neuroscientists better access to the significance of the auditory-motor loop and its role in perception of the surrounding space. Given that a dancer has a very strong sense of body ownership (probably through a very accurate dynamic body schema) (Walsh et al. 2011), she is an ideal subject to investigate the feeling of controlling one's own body movements, and, through them, events in the external environment (Moore et al. 2009, Jola et al in press).We conducted several work sessions, which brought together a choreographer/dancer, a neuroscientist, a composer, and two researchers in acoustics and audio signal processing. These sessions were held at IRCAM (Institute for Research and Coordination Acoustic/Music, Paris) in a variable-acoustics concert hall equipped with a Wave Field Synthesis (WFS) sound reproduction system and infrared cameras for motion capture. During these work sessions, we concentrated on two specific questions: 1) is it possible to extend the body space of the dancer through auditory feedback (Maravita and Iriki 2004)? and 2) can we alter the dancer's perception of space by altering perceptions associated with movements?We used an interactive setup in which a collection of pre-composed sound events (individual sounds or musical sentences) could be transformed and rendered in real time according to the movements and the position of the dancer, that were sensed by markers on her body and detected by a motion tracking system. The transformations applied to the different sound components through the dancer's movement and position concerned not only musical parameters such as intensity, timbre, etc. but also the spatial parameters of the sounds. The technology we used allowed us to control their trajectory in space, apparent distance and the sound reverberation ambiance. We elaborated a catalogue of interaction modes with auditory settings that changed according to the dancer's movements. An interaction mode is defined by different mappings of position, posture or gesture of the dancer to musical and spatial parameters. For instance, a sound event may be triggered if the dancer is within a certain region or if she performs a predefined gesture. More elaborated modes involved the modulation of musical parameters by continuous movements of the dancer.The pertinence at a perceptive and cognitive level of the catalogue of interactions has been tested throughout the sessions. We observed that the detachable markers could be used to create a perception of extended body space, and that the performer perceived the stage space differently according to the auditory feedback of her action.The dancer reported that each experience with the technology shed light on her need ...
There is a very significant move today towards multiple zone fracturing operations in a single well where zones are separated and individually fractured, particularly in shale gas completions. This technique has to date involved the use of ball seat activated sliding sleeves located across each zone, with consequent reductions in internal diameter (ID) and attendant flow characteristic limitations or selective perforating, fracing and isolation with a bridge plug in a cemented casing string while working up the hole. Both approaches involve many downhole intervention operations such as perforating, shifting sleeves, running plugs and subsequently milling them up with coiled tubing (CT) intervention, all of which extend the length of the operation and add to the overall costs. To simplify the process of multiple fracturing operations, especially in open hole, a new approach has been designed which uses Radio Frequency Identification (RFID) techniques to remotely operate sliding sleeves. The number of sleeves that can be run in a well using this technology is essentially unlimited, each one having the same ID and a unique electronic address which allows it to be operated remotely at will. This approach provides for a means of making considerably more zones available for treatment without physical intervention with CT or wireline and thereby speeds the multiple frac operations and allows for wellbore clean up from the toe to the heel of the well. In this paper the authors will describe the design and operation of the RFID operated frac sleeves and the advantages they provide. They will go on to detail the Worlds’ first remotely operated horizontal openhole frac completion where frac sleeves and swell packers were used in an extended reach horizontal shale gas well.
There is a very significant move today towards multiple zone fracturing operations in a single well where zones are separated and individually fractured, particularly in shale gas completions. This technique has to date involved the use of ball seat activated sliding sleeves located across each zone, with consequent reductions in internal diameter (ID) and attendant flow characteristic limitations or selective perforating, fracing and isolation with a bridge plug in a cemented casing string while working up the hole. Both approaches involve many downhole intervention operations such as perforating, shifting sleeves, running plugs and subsequently milling them up with coiled tubing (CT) intervention, all of which extend the length of the operation and add to the overall costs. To simplify the process of multiple fracturing operations, especially in open hole, a new approach has been designed which uses Radio Frequency Identification (RFID) techniques to remotely operate sliding sleeves. The number of sleeves that can be run in a well using this technology is essentially unlimited, each one having the same ID and a unique electronic address which allows it to be operated remotely at will. This approach provides for a means of making considerably more zones available for treatment without physical intervention with CT or wireline and thereby speeds the multiple frac operations and allows for wellbore clean up from the toe to the heel of the well. In this paper the authors will describe the design and operation of the RFID operated frac sleeves and the advantages they provide. They will go on to detail the Worlds’ first remotely operated horizontal openhole frac completion where frac sleeves and swell packers were used in an extended reach horizontal shale gas well.
With the increase in drilling activity in new subsea and deep water exploration and development, a reliable means of intervention-less completion technology has become a major consideration in helping to reduce operational risk and achieve economic exploitation of new hydrocarbon reserves. Although intelligent completion methods have been in use for some time, the communication system they require can be expensive and time consuming and the need for a simpler, more cost effective, method of intervention-less well completion and management is clearly an attractive option. To simplify the completion process, a new system has been developed which uses the well tried and trusted communication method known as Radio Frequency Identification (RFID). RFID is a reliable well proven technology which is used in countless applications in daily life; however its applicability to the oil and gas industry is only now beginning to be recognized. In this system tubing mounted control modules, which are capable of performing a number of key completion operations, are activated by simply dropping and pumping down RFID tags or, where pumping down is not possible, by the application of pressure cycles. This system consists of several primary components as follows: Battery powered control module with antenna and processors, motor, pumps and closed hydraulic reservoir.A circulating control valve functioning as a sliding sleeve.A hydraulic set packer.A barrier valve. Using these modules all the operations involved in an upper well completion can be performed free of interventions. This paper will give an introduction of RFID technology and present operational mechanism in detail for key accessories of this new intervention-less completion system; and also display one typical logic application of sequence of operations for a new intervention-less upper completion system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.