Routine screening CT for the identification of COVID-19 pneumonia is currently not recommended by most radiology societies. However, the number of CTs performed in persons under investigation (PUI) for COVID-19 has increased. We also anticipate that some patients will have incidentally detected findings that could be attributable to COVID-19 pneumonia, requiring radiologists to decide whether or not to mention COVID-19 specifically as a differential diagnostic possibility. We aim to provide guidance to radiologists in reporting CT findings potentially attributable to COVID-19 pneumonia, including standardized language to reduce reporting variability when addressing the possibility of COVID-19. When typical or indeterminate features of COVID-19 pneumonia are present in endemic areas as an incidental finding, we recommend contacting the referring providers to discuss the likelihood of viral infection. These incidental findings do not necessarily need to be reported as COVID-19 pneumonia. In this setting, using the term “viral pneumonia” can be a reasonable and inclusive alternative. However, if one opts to use the term “COVID-19” in the incidental setting, consider the provided standardized reporting language. In addition, practice patterns may vary, and this document is meant to serve as a guide. Consultation with clinical colleagues at each institution is suggested to establish a consensus reporting approach. The goal of this expert consensus is to help radiologists recognize findings of COVID-19 pneumonia and aid their communication with other healthcare providers, assisting management of patients during this pandemic.
Disruption of one allele of the LIS1 gene causes a severe developmental brain abnormality, type I lissencephaly. In Aspergillus nidulans, the LIS1 homolog, NUDF, and cytoplasmic dynein are genetically linked and regulate nuclear movements during hyphal growth. Recently, we demonstrated that mammalian LIS1 regulates dynein functions. Here we characterize NUDEL, a novel LIS1-interacting protein with sequence homology to gene products also implicated in nuclear distribution in fungi. Like LIS1, NUDEL is robustly expressed in brain, enriched at centrosomes and neuronal growth cones, and interacts with cytoplasmic dynein. Furthermore, NUDEL is a substrate of Cdk5, a kinase known to be critical during neuronal migration. Inhibition of Cdk5 modifies NUDEL distribution in neurons and affects neuritic morphology. Our findings point to cross-talk between two prominent pathways that regulate neuronal migration.
Cyclin-dependent kinase 5 (Cdk5) plays a pivotal role in brain development and neuronal migration. Cdk5 is abundant in postmitotic, terminally differentiated neurons. The ability of Cdk5 to phosphorylate substrates is dependent on activation by its neuronal-specific activators p35 and p39. There exist striking differences in the phenotypic severity of Cdk5-deficient mice and p35-deficient mice. Cdk5-null mutants show a more severe disruption of lamination in the cerebral cortex, hippocampus, and cerebellum. In addition, Cdk5-null mice display perinatal lethality, whereas p35-null mice are viable. These discrepancies have been attributed to the function of other Cdk5 activators, such as p39. To understand the roles of p39 and p35, we created p39-null mice and p35/p39 compound-mutant mice. Interestingly, p39-null mice show no obvious detectable abnormalities, whereas p35(-/-)p39(-/-) double-null mutants are perinatal lethal. We show here that the p35(-/-)p39(-/-) mutants exhibit phenotypes identical to those of the Cdk5-null mutant mice. Other compound-mutant mice with intermediate phenotypes allow us to determine the distinct and redundant functions between p35 and p39. Our data strongly suggest that p35 and p39 are essential for Cdk5 activity during the development of the nervous system. Thus, p35 and p39 are likely to be the principal, if not the only, activators of Cdk5.
Tuberculosis can affect virtually any organ system in the body and can be devastating if left untreated. The increasing prevalence of tuberculosis in both immunocompetent and immunocompromised individuals in recent years makes this disease a topic of universal concern. Because tuberculosis demonstrates a variety of clinical and radiologic findings and has a known propensity for dissemination from its primary site, it can mimic numerous other disease entities. Primary pulmonary tuberculosis typically manifests radiologically as parenchymal disease, lymphadenopathy, pleural effusion, miliary disease, or lobar or segmental atelectasis. In postprimary tuberculosis, the earliest radiologic finding is the development of patchy, ill-defined segmental consolidation. Both computed tomography (CT) and magnetic resonance (MR) imaging are helpful in diagnosing tuberculous spondylitis and tuberculous arthritis. CT is especially useful in depicting gastrointestinal and genitourinary tuberculosis. In tuberculosis involving the central nervous system, CT and MR imaging findings vary depending on the stage of disease and the character of the lesion. A high degree of clinical suspicion and familiarity with the various radiologic manifestations of tuberculosis allow early diagnosis and timely initiation of appropriate therapy, thereby reducing patient morbidity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.