5-Ethynyl-1,3-benzenedicarboxylic acid (H2ebdc) reacted with lead(II) acetate trihydrate yields a 1D ladder network, [Pb(ebdc)(MeOH)]2·H2O (1). Removing crystals of 1 from the mother liquor results in a facile single crystal to single crystal transition, yielding 2D [Pb(ebdc)] net (2) with a change in space group from I2/a to P1̄.
A vapor‐induced cyclization has been observed in the host environment of a crystalline molecular flask (CMF), within which 1,8‐bis(2‐phenylethynyl)naphthalene (bpen), a diarenynyl system primed for cyclization, was exposed to iodine vapor to yield the corresponding indeno[2,1‐α]phenalene species. The cyclization process, unique in its vapor‐induced, solvent‐free nature, was followed spectroscopically, and found to occur concurrently with the displacement of lattice solvent for molecular iodine in CMF⋅0.75 bpen⋅2.25 CHCl3⋅H2O. The cyclization occurred under mild conditions and without the need to suspend the crystals in solvent. The ability of CMFs to host purely gas‐induced reactions is further highlighted by the subsequent sequential oxidation reaction of cyclized 7‐iodo‐12‐phenylindeno[2,1‐α]phenalene (ipp) with molecular oxygen derived from air, yielding 12‐hydroxy‐7‐iodo‐2‐phenylindeno[2,1‐α]phenalen‐1(12H)‐one (hipp).
Reacting equimolar quantities of 5-allenyl-1,3-benzenedicarboxylic acid (H2abd) with lead(II) acetate trihydrate in N,N-dimethylformamide (DMF) under solvothermal conditions results in formation of a metallogel with a critical gelation percentage of 1% w/v. Elemental analysis performed on the gel provided a molecular composition ratio of [Pb(abd)(H2O)]n (1). Viewing the gel by scanning electron microscopy (SEM) identified an entangled network of cross-linked nano-fibres. 1 H-NMR aliquots of hydrated lead(II) acetate added to a solution of H2abd in deuterated DMF allow inferences to be made about solution-state behaviour that occurs during the initial gel aggregation stage. Under nonsolvothermal conditions, combining H2abd and hydrated lead(II) acetate resulted in formation of single crystals suitable for X-ray diffraction, which were identified as a 3D coordination polymer with composition [Pb(abd)(DMF)] (2). Structural features observed within this 3D coordination polymer provide the basis for assigning the molecular structure to the fibrils present within gel 1. This assertion is supported by comparable vibrational profiles taken from a sample of dried gel 1 to that of crystalline 2, and the matching of early solution-state 1 H-NMR spectroscopic trends to later solid-state observations.A new allene dicarboxylate ligand reacts with hydrated lead(II) acetate in DMF to yield either a crystalline 3D framework or a metallogel dependent on the reaction temperature.
The influence of weak hydrogen bonds on the crystal packing of a series of heavy and transition metal coordination polymers synthesized using the ligand 5-ethynyl-1,3-benzenedicarboxylic acid (H 2 ebdc) has been evaluated. Five coordination polymers were prepared and crystallographically characterized. These comprise two 1D chains, [Pb(ebdc)(DMSO) 2 ] (1) and 5). The crystal structure of the free acid ligand form, H 2 ebdc•H 2 O, is also reported. Within the lead(II) coordination structures, ethynyl-derived C− H•••O interactions are consistently found to provide the dominant influence over the crystal packing, as determined by solid-state structural analysis in combination with vibrational spectroscopy. The influence of weak hydrogenbonding effects on the crystal packing of the transition metal coordination polymers that contain lattice water and methanol molecules was found to be far less prominent, which is interpreted in terms of the greater prevalence of strong hydrogen-bond donors and acceptors forming O−H•••O interactions within these crystalline lattices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.