SUMMARY
B cells foster squamous cell carcinogenesis (SCC) through deposition of immunoglobulin-containing immune complexes in premalignant tissue and Fcγreceptor-dependent activation of myeloid cells. Since human SCCs of the vulva and head and neck exhibited hallmarks of B cell infiltration, we examined B cell-deficient mice and found reduced ability to support SCC growth. Although ineffective as a single agent, treatment of mice bearing pre-existing SCCs with B cell-depleting αCD20 monoclonal antibodies improved response to platinum- and taxol-based chemotherapy. Improved chemo-responsiveness was dependent on altered chemokine expression by macrophages that fostered tumor infiltration of activated CD8+ T cells via CCR5-dependent mechanisms. These data reveal that B cells, and the downstream myeloid-based pathways they regulate, represent tractable targets for anti-cancer therapy in select tumors.
Stimulation of the epidermal growth factor receptor (EGF-R) produces numerous effects on central nervous system (CNS) cells in vitro including neuronal survival and differentiation, astrocyte proliferation and the proliferation of multipotent progenitors. However, the in vivo role of EGF-R is less well understood. In the present study, we demonstrate that EGF-R null mice generated on a 129Sv/J Swiss Black background undergo focal but massive degeneration the olfactory bulb, piriform cortex, neocortex, and thalamus between postnatal days 5 and 8 which is due, at least in part, to apoptosis. Some of the neuronal populations that degenerate do not normally express EGF-R, indicating an indirect mechanism of neuronal death. There were also delays in GFAP expression within the glia limitans and within structures outside the germinal zones in early postnatal ages. At or just prior to the onset of the degeneration, however, there was an increase in GFAP expression in these areas. The brains of EGF-R (-/-) animals were smaller but cytoarchitecturally normal at birth and neuronal populations appeared to be intact, including striatal GABAergic and midbrain dopaminergic neurons which have previously been shown to express EGF-R. Multipotent progenitors and astrocytes derived from EGF-R (-/-) mice were capable of proliferating in response to FGF-2. These data demonstrate that EGF-R expression is critical for the maintenance of large portions of the postnatal mouse forebrain as well as the normal development of astrocytes.
/MMP2 -/-mice (four mice/experimental group) in response to mustard oil (black bars), as compared with mineral oil (white bars). Data reflect mean ± S.E.M. *P<0.005.
Induction of heparin-binding epidermal growth factor-like growth factor (HB-EGF) mRNA in mouse skin organ culture was blocked by two pan-ErbB receptor tyrosine kinase (RTK) inhibitors but not by genetic ablation of ErbB1, suggesting involvement of multiple ErbB species in skin physiology. Human skin, cultured normal keratinocytes, and A431 skin carcinoma cells expressed ErbB1, ErbB2, and ErbB3, but not ErbB4. Skin and A431 cells expressed more ErbB3 than did keratinocytes. Despite strong expression of ErbB2 and ErbB3, heregulin was inactive in stimulating tyrosine phosphorylation in A431 cells. In contrast, it was highly active in MDA-MB-453 breast carcinoma cells. ErbB2 displayed punctate cytoplasmic staining in A431 and keratinocytes, compared to strong cell surface staining in MDA-MB-453. In skin, ErbB2 was cytoplasmic in basal keratinocytes, assuming a cell surface pattern in the upper suprabasal layers. In contrast, ErbB1 retained a cell surface distribution in all epidermal layers. Keratinocyte proliferation in culture was found to be ErbB1-RTK-dependent, using a selective inhibitor. These results suggest that in skin keratinocytes, ErbB2 transduces ligand-dependent differentiation signals, whereas ErbB1 transduces ligand-dependent proliferation/survival signals. Intracellular sequestration of ErbB2 may contribute to the malignant phenotype of A431 cells, by allowing them to respond to ErbB1-dependent growth/survival signals, while evading ErbB2-dependent differentiation signals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.