Defect sites play an essential role in ceria catalysis. In this study, ceria nanocrystals with well-defined surface planes have been synthesized and utilized for studying defect sites with both Raman spectroscopy and O(2) adsorption. Ceria nanorods ({110} + {100}), nanocubes ({100}), and nano-octahedra ({111}) are employed to analyze the quantity and quality of defect sites on different ceria surfaces. On oxidized surfaces, nanorods have the most abundant intrinsic defect sites, followed by nanocubes and nano-octahedra. When reduced, the induced defect sites are more clustered on nanorods than on nanocubes, although similar amounts (based on surface area) of such defect sites are produced on the two surfaces. Very few defect sites can be generated on the nano-octahedra due to the least reducibility. These differences can be rationalized by the crystallographic surface terminations of the ceria nanocrystals. The different defect sites on these nanocrystals lead to the adsorption of different surface dioxygen species. Superoxide on one-electron defect sites and peroxide on two-electron defect sites with different clustering degree are identified on the ceria nanocrystals depending on their morphology. Furthermore, the stability and reactivity of these oxygen species are also found to be surface-dependent, which is of significance for ceria-catalyzed oxidation reactions.
We report herein a hierarchically structured sulfur-carbon (S/C) nanocomposite material as the high surface-area cathode for rechargeable lithium batteries. A porous carbon with a uniform distribution of mesopores of 7.3 nm has been synthesized through a soft-template synthesis method. The potassium hydroxide activation of this mesoporous carbon results in a bimodal porous carbon with added microporosity of less than 2 nm to the existing mesopores without deterioration of the integrity of the original mesoporous carbon. Elemental sulfur has been loaded to the micropores through a solution infiltration method. The resulted S/C composites with various loading level of sulfur have a high surface areas and large internal porosities. These materials have been tested as novel cathodes for Li/S batteries. The results show that the cyclability and the utilization of sulfur in the Li/S batteries have been significantly improved. The large internal porosity and surface area of the micromesoporous carbon is essential for the high utilization of sulfur.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.