Unstable minisatellites display high frequencies of spontaneous gain and loss of repeats in the human germline. Most length changes arise through complex recombination events including intra-allelic duplications/deletions and inter-allelic transfers of repeats. Definition of the factors modulating instability requires both measurement of mutation rate and detailed analysis of mutant structures at the level of individual alleles. We have measured mutation rates in sperm for a wide range of alleles of the highly unstable human minisatellite CEB1. Instability varies by three orders of magnitude between alleles and increases steadily with the size of the tandem array. Structural analysis of mutant molecules derived from six alleles revealed that it is the rate of intra-allelic rearrangements which increases with array size and that intra-allelic duplication events tend to cluster within homogeneous segments of alleles; both phenomena resemble features of trinucleotide repeat instability. In contrast, inter-allelic transfers occur at a fairly constant rate, irrespective of array length, and show a mild polarity towards one end of the minisatellite, suggesting the possible influence of flanking DNA on these conversion-like events.
Minisatellites provide not only the basis for DNA fingerprinting and DNA profiling but also extremely informative systems for analysing processes of tandem repeat turnover in the human genome. Minisatellite instability appears to involve distinct mutation processes in somatic and germline cells; in the germline, mutation is frequently dominated by inter-allelic conversion-like events most likely occurring at meiosis and apparently regulated by cis-acting mutation initiator elements. Attempts to define these initiators in transgenic mice have so far been thwarted by what appears to be a major human/mouse barrier to the inter-species transfer of repeat instability. Minisatellites not only show high frequency spontaneous mutation in the germline, but also appear to be very sensitive to mutation induction by ionizing radiation, both in experimentally irradiated mice and in human populations exposed following the Chernobyl disaster; the mechanisms of mutation induction by radiation remain enigmatic.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.