(i) not all post-surgical neuropathies are mechanical, and inflammatory mechanisms can be causative, presenting as pain and weakness in a focal, multifocal or diffuse pattern; (ii) these inflammatory neuropathies may be recognized by their spatio-temporal separation from the site and time of surgery and by the characteristic magnetic resonance imaging features; (iii) occasionally post-surgical inflammatory and mechanical neuropathies are difficult to distinguish and nerve biopsy may be required to demonstrate an inflammatory mechanism, which in our cohort often, but not exclusively, exhibited pathological features of microvasculitis and ischaemia; and (iv) recognizing the role of inflammation in these patients' neuropathy led to rational immunotherapy, which may have resulted in the subsequent improvement of neurological symptoms and impairments.
The natural history of intraneural perineurioma has been inadequately studied. The aim of this study was to characterize the clinical presentation, electrophysiologic and imaging features and outcome of intraneural perineurioma. We ask if intraneural perineurioma is a pure motor syndrome that remains confined to one nerve and should be treated by surgical resection. We examined the nerve biopsies of cases labelled perineurioma and selected those with diagnostic features. Thirty-two patients were identified; 16 children and 16 adults; 16 males and 16 females. Median age of onset of neurological symptoms was 14 years (range 0.5-55 years) and median age at evaluation was 17 years (range 2-56 years). All patients had motor deficits; however, mild sensory symptoms or signs were experienced by 27 patients; 'prickling' or 'asleep numbness' in 20, mild pain in 13 and sensory loss in 23. The sciatic nerve or its branches was most commonly affected in 15, followed by brachial plexus, radial nerve and ulnar nerve (four each). Magnetic resonance imaging demonstrated nerve enlargement (29/32), T1 isointensity (27/32), T2 hyperintensity (25/32) and contrast enhancement (20/20). Diagnoses were made based on targeted biopsy of the focal nerve enlargement identified by imaging. Neurological impairment was of a moderate severity (median Neuropathy Impairment Score was 12 points, range 2-49 points). All patients had focal involvement with 27 involving one nerve and five involving a plexus (one bilateral). Long-term follow-up was possible by telephone interview for 23 patients (median 36 months, range 2-177 months). Twelve patients also had follow-up neurologic evaluation (median 45 months, range 10-247 months). The median Neuropathy Impairment Score had changed from 12.6 to 15.4 points (P = 0.19). In all cases, the distribution of neurologic findings remained unchanged. Median Dyck Disability Score was 3 (range 2-5) indicating a mild impairment without interfering with activities of daily living. Ten patients judged their symptoms unchanged, nine slightly worse and four slightly better. We conclude intraneural perineurioma is a benign hypertrophic (non onion bulb) peripheral nerve tumour that presents insidiously in young people and is motor predominant with mild sensory involvement. It is most often a mononeuropathy, but a plexopathy can occur. Diagnosis of this condition requires clinical suspicion, imaging, targeted fascicular biopsy of the lesion and expertise of nerve pathologists. As these tumours are static or slowly progressive, remain confined to their original distribution and have low morbidity, they probably should not be resected routinely. Because intensive evaluation is needed for diagnosis, intraneural perineurioma is probably under-recognized.
Whether compression nerve injury is due to ischemia, direct mechanical injury, or both remains unsettled. To assess structural changes of nerve during compression, peroneal nerves of rats were compressed at various pressures for different times, and the structural alterations were stopped by simultaneous in situ and perfusion fixation. The structural changes observed during a few minutes of compression cannot be explained by ischemic injury because the pathologic alterations characteristic of ischemia take many hours to develop and in any case are different from the ones found here. The pressure-and time-related structural changes observed in the present study under the cuffwere (i) decrease in fascicular area and increase in fiber density due to expression of endoneurial fluid; (i) compression and expression of axoplasm, sometimes to the point of fiber transection; (iii) lengthening of internodes; and (iv) obscuration of nodes of Ranvier due to cleavage and displacement of myelin and overlapping of nodes by displaced loops of myelin. At the edges of the cuff the changes were (i) increase of fascicular area probably from expressed endoneurial fluid; (ii) widening of nodal gaps, perhaps mainly from translocated axonal fluid; and (iii) disordered structure of axoplasm. We suggest that the process of paranodal demyelination and axonal transection are linked, occur during the act of compression, and are due to shear forces. The initial event is expression of endoneurial fluid, followed by compression and expression of axoplasm and cleavage and displacement oflayers of myelin. Conceivably, with prolonged cuff compression ischemic injury might be found to be superimposed on mechanical injury.In humans, nerve compression injury may follow use of a tourniquet at too high a pressure, for too long a time, or from improper application; lying in one position without moving for a long time (as may occur during anesthesia, inebriation, or coma) with a limb nerve compressed against bone by a protruding ridge or hard surface; or prolonged sitting with the legs crossed or prolonged leaning on the elbows (1, 2). Excellent recovery is expected after compression injury, whereas it is usually delayed and faulty after nerve transection. This difference in outcome is usually explained by conduction block and demyelination in the former and complete fiber degeneration and faulty regeneration in the latter (3-5).The mechanisms underlying nerve compression injury have usually been attributed to ischemia (6-8), to mechanical forces (9), or to both.In the present study the structural alterations of nerve during compression were stopped by simultaneous in situ and perfusion fixation, usually during short periods of compression. We found nodal lengthening and other acute structural changes after only a few minutes of compression, which appear to explain the paranodal demyelination and axonal degeneration that are characteristic of nerve compression injury. The structural alterations that develop during acute compression are different...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.