The yeast peptide-methionine sulfoxide reductase (MsrA) was overexpressed in a Saccharomyces cerevisiae null mutant of msrA by using a high-copy plasmid harboring the msrA gene and its promoter. The resulting strain had about 25-fold higher MsrA activity than its parent strain. When exposed to either hydrogen peroxide, paraquat, or 2,2-azobis-(2-amidinopropane) dihydrochloride treatment, the MsrA overexpressed strain grew better, had lower free and protein-bound methionine sulfoxide and had a better survival rate under these conditions than did the msrA mutant and its parent strain. Substitution of methionine with methionine sulfoxide in a medium lacking hydrogen peroxide had little effect on the growth pattern, which suggests that the oxidation of free methionine in the growth medium was not the main cause of growth inhibition of the msrA mutant. Ultraviolet A radiation did not result in obvious differences in survival rates among the three strains. An enhanced resistance to hydrogen peroxide treatment was shown in human T lymphocyte cells (Molt-4) that were stably transfected with the bovine msrA and exposed to hydrogen peroxide. The survival rate of the transfected strain was much better than its parent strain when grown in the presence of hydrogen peroxide. These results support the proposition that the msrA gene is involved in the resistance of yeast and mammalian cells to oxidative stress.
Signal transducers and activators of transcription 3 (STAT3) is a transcription factor that is aberrantly activated in many cancer cells. Constitutively activated STAT3 is oncogenic, presumably as a consequence of the genes that it differentially regulates. Activated STAT3 correlated with elevated cyclin D1 protein in primary breast tumors and breast cancer-derived cell lines. Cyclin D1 mRNA levels were increased in primary rat-, mouse-, and human-derived cell lines expressing either the oncogenic variant of STAT3 (STAT3-C) or vSrc, which constitutively phosphorylates STAT3. Mutagenesis of STAT3 binding sites within the cyclin D1 promoter and chromatin immunoprecipitation studies showed an association between STAT3 and the transcriptional regulation of the human cyclin D1 gene.
Interleukin-6 (IL-6) and the subsequent Janus-activated kinase (JAK)-dependent signaling pathways play a critical role in the pathogenesis of multiple myeloma. Here, we compared the sensitivity and specificity of a novel pan-JAK inhibitor, tetracyclic pyridone 6 (P6), with that of AG490 in a panel of myeloma-derived cell lines. P6 induced growth arrest and subsequent apoptosis of the IL-6-dependent hybridoma and myeloma-derived cell lines (B9 and INA-6) grown either in IL-6-containing medium or in the presence of bone marrowderived stromal cells (BMSC) using much lower concentrations of drug and with significantly faster kinetics than AG490.
We determined that signal transducer and activator of transcription 3 (Stat3) is tyrosine phosphorylated in 37% of primary breast tumors and 63% of paired metastatic axillary lymph nodes. Examination of the distribution of tyrosine phosphorylated (pStat3) in primary tumors revealed heterogenous expression within the tumor with the highest levels found in cells on the edge of tumors with relatively lower levels in the central portion of tumors. In order to determine Stat3 target genes that may be involved in migration and metastasis, we identified those genes that were differentially expressed in primary breast cancer samples as a function of pStat3 levels. In addition to known Stat3 transcriptional targets (Twist, Snail, Tenascin-C and IL-8), we identified ENPP2 as a novel Stat3 regulated gene, which encodes autotaxin (ATX), a secreted lysophospholipase which mediates mammary tumorigenesis and cancer cell migration. A positive correlation between nuclear pStat3 and ATX was determined by immunohistochemical analysis of primary breast cancer samples and matched axillary lymph nodes and in several breast cancer derived cell lines. Inhibition of pStat3 or reducing Stat3 expression led to a decrease in ATX levels and cell migration. An association between Stat3 and the ATX promoter, which contains a number of putative Stat3 binding sites, was determined by chromatin immunoprecipitation. These observations suggest that activated Stat3 may regulate the migration of breast cancer cells through the regulation of ATX.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.