We show that by unfolding the outdated EEG standard bandwidths in a fine-grade equidistant 99-point spectrum we can precisely detect alcoholism. Using this novel pre-processing step prior to entering a random forests classifier, our method substantially outperforms all previous results with a balanced accuracy of 97.4 percent. Our machine learning work contributes to healthcare and information systems. Due to its drastic and protracted consequences, alcohol consumption is always a critical issue in our society. Consequences of alcoholism in the brain can be recorded using electroencephalography (EEG). Our work can be used to automatically detect alcoholism in EEG mass data within milliseconds. In addition, our results challenge the medically outdated EEG standard bandwidths.
We present the results from a white-box machine learning approach to detect cardiac arrhythmias using electrocardiographic data. A C5.0 is trained to recognize four classes using common features. The four classes are (i) atrial fibrillation and atrial flutter, (ii) tachycardias (iii), sinus bradycardia and (iv) sinus rhythm. Data from 10,646 subjects, 83% of whom have at least one arrhythmia and 17% of whom exhibit a normal sinus rhythm, are used. The C5.0 is trained using 10-fold cross-validation and is able to achieve a balanced accuracy of 95.35%. By using the white-box machine learning approach, a clear and comprehensible tree structure can be revealed, which has selected the 5 most important features from a total of 24 features. These 5 features are ventricular rate, RR-Interval variation, atrial rate, age and difference between longest and shortest RR-Interval. The combination of ventricular rate, RR-Interval variation and atrial rate is especially relevant to achieve classification accuracy, which can be disclosed through the tree. The tree assigns unique values to distinguish the classes. These findings could be applied in medicine in the future. It can be shown that a white-box machine learning approach can reveal granular structures, thus confirming known linear relationships and also revealing nonlinear relationships. To highlight the strength of the C5.0 with respect to this structural revelation, the results of further white-box machine learning and black-box machine learning algorithms are presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.