Various nucleic acid assays have been developed and implemented for diagnostics and therapeutic monitoring of human immunodeficiency virus type 1 (HIV-1) and hepatitis C virus (HCV) infections. The highthroughput, semiautomated assays described here were developed to provide a method suitable for screening plasma specimens for the presence of HIV-1 and HCV RNAs. Three assays were developed: a multiplex HIV-1/HCV assay for simultaneous detection of HIV-1 and HCV, and discriminatory assays for specific detection of HIV-1 and HCV. The assay systems utilize three proprietary technologies: (i) target capture-based sample preparation, (ii) transcription-mediated amplification (TMA), and (iii) hybridization protection assay (HPA). An internal control is incorporated into each reaction to control for every step of the assay and identify random false-negative reactions. The assays demonstrated a sensitivity of at least 100 copies/ml for each target, and they detected with similar sensitivity all major variants of HCV and HIV-1, including HIV-1 group O strains. Assay sensitivity for one virus was not affected by the presence of the other. The specificity of these TMA-driven assays was >99.5% in both normal donor specimens and plasma containing potentially interfering substances or other blood-borne pathogens. Statistical receiver operating characteristic plots of 1 ؊ specificity versus sensitivity data determined very wide analyte cutoff values for each assay at the point at which the assay specificity and sensitivity were both >99.5%. The sensitivity, specificity, and throughput capability predict that these assays will be valuable for large-volume plasma screening, either in a blood bank setting or in other diagnostic applications.
To study the effect of cell type-restricted hamster PrP expression on susceptibility to the hamster scrapie agent, we generated transgenic mice using a 1 kb hamster cDNA clone containing the 0.76 kb HPrP open reading frame under control of the neuron-specific enolase promoter. In these mice, expression of HPrP was detected only in brain tissue, with highest levels found in neurons of the cerebellum, hippocampus, thalamus, and cerebral cortex. These transgenic mice were susceptible to infection by the 263K strain of hamster scrapie with an average incubation period of 93 days, compared to 72 days in normal hamsters. In contrast, nontransgenic mice were not susceptible to this agent. These results indicate that neuron-specific expression of the 1 kb HPrP minigene including the HPrP open-reading frame is sufficient to mediate susceptibility to hamster scrapie, and that HPrP expression in nonneuronal brain cells is not necessary to overcome the TSE species barrier.
Although primary antiviral CD8 ؉ cytotoxic T lymphocytes (CTL) can be induced in mice depleted of CD4 ؉ T cells, the role of CD4 ؉ T lymphocytes in the generation and maintenance of antiviral memory CTL is uncertain. This question, and the consequences upon vaccine-mediated protection, were investigated in transgenic CD4 knockout (CD4ko) mice, which lack CD4 ؉ T lymphocytes. Infection of immunocompetent C57BL/6 mice with lymphocytic choriomeningitis virus (LCMV), or with recombinant vaccinia viruses bearing appropriate LCMV sequences, induces long-lasting protective immunity, mediated mainly by antiviral CD8 ؉ CTL. Here we report two important findings. First, LCMV-specific CD8 ؉ memory CTL are maintained at considerably lower levels in CD4ko mice than in normal C57BL/6J mice; we demonstrate a reduction in precursor CTL evident as soon as 30 days postimmunization and declining, by day 120, to levels 1 to 2 log units below those in normal mice. Thus, CD4 ؉ T cells appear to be important to the generation and maintenance of their CD8 ؉ counterparts. Second, this reduction has an important biological consequence; compared with immunocompetent mice, CD4ko mice immunized with vaccinia virus recombinants expressing nucleoprotein or glycoprotein of LCMV are less effectively protected from subsequent LCMV challenge. Thus, this study underscores the potential importance of CD4 ؉ T lymphocytes in generation of appropriate levels of CD8 ؉cell-mediated immunoprotective memory and has implications for vaccine efficacy in individuals with immune defects in which CD4 levels may be reduced, such as AIDS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.